Suppr超能文献

基于高分辨率 CT 扫描的三维纹理分析的自动、阈值无关的皮质骨分割。

Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans.

机构信息

Computational Image Analysis and Radiology Lab, Department of Radiology, Medical University of Vienna, 1090 Vienna, Austria.

出版信息

Bone. 2012 Sep;51(3):480-7. doi: 10.1016/j.bone.2012.06.005. Epub 2012 Jun 13.

Abstract

The quantitative assessment of metabolic bone diseases relies on tissue properties such as bone mineral density (BMD) and bone microarchitecture. In spite of an increasing number of publications using high-resolution peripheral quantitative computed-tomography (HR-pQCT), the accurate and reproducible separation of cortical and trabecular bone remains challenging. In this paper, we present a novel, fully automated, threshold-independent technique for the segmentation of cortical and trabecular bone in HR-pQCT scans. This novel post-processing method is based on modeling appearance characteristics from manually annotated cases. In our experiments the algorithm automatically selected texture features with high differentiating power and trained a classifier to separate cortical and trabecular bone. From this mask, cortical thickness and tissue volume could be calculated with high accuracy. The overlap between the proposed threshold-independent segmentation tool (TIST) and manual contouring was 0.904±0.045 (Dice coefficient). In our experiments, TIST obtained higher overall accuracy in our measurements than other techniques.

摘要

代谢性骨病的定量评估依赖于组织特性,如骨矿物质密度(BMD)和骨微结构。尽管越来越多的出版物使用高分辨率外周定量计算机断层扫描(HR-pQCT),但准确和可重复的皮质骨和松质骨的分离仍然具有挑战性。在本文中,我们提出了一种新颖的、全自动的、与阈值无关的 HR-pQCT 扫描中皮质骨和松质骨分割的新技术。这种新的后处理方法是基于从手动注释病例中建模外观特征。在我们的实验中,算法自动选择具有高区分能力的纹理特征,并训练分类器来分离皮质骨和松质骨。从这个掩模中,可以高精度地计算皮质厚度和组织体积。所提出的与阈值无关的分割工具(TIST)与手动轮廓之间的重叠为 0.904±0.045(Dice 系数)。在我们的实验中,TIST 在我们的测量中获得了比其他技术更高的整体准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验