Suppr超能文献

基于3D U-Net的深度卷积神经网络对椎骨皮质进行自动分割

Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network.

作者信息

Li Yang, Yao Qianqian, Yu Haitao, Xie Xiaofeng, Shi Zeren, Li Shanshan, Qiu Hui, Li Changqin, Qin Jian

机构信息

Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.

Mechanical and Electrical Engineering College, Hainan University, Haikou, China.

出版信息

Front Bioeng Biotechnol. 2022 Oct 19;10:996723. doi: 10.3389/fbioe.2022.996723. eCollection 2022.

Abstract

We developed a 3D U-Net-based deep convolutional neural network for the automatic segmentation of the vertebral cortex. The purpose of this study was to evaluate the accuracy of the 3D U-Net deep learning model. In this study, a fully automated vertebral cortical segmentation method with 3D U-Net was developed, and ten-fold cross-validation was employed. Through data augmentation, we obtained 1,672 3D images of chest CT scans. Segmentation was performed using a conventional image processing method and manually corrected by a senior radiologist to create the gold standard. To compare the segmentation performance, 3D U-Net, Res U-Net, Ki U-Net, and Seg Net were used to segment the vertebral cortex in CT images. The segmentation performance of 3D U-Net and the other three deep learning algorithms was evaluated using DSC, mIoU, MPA, and FPS. The DSC, mIoU, and MPA of 3D U-Net are better than the other three strategies, reaching 0.71 ± 0.03, 0.74 ± 0.08, and 0.83 ± 0.02, respectively, indicating promising automated segmentation results. The FPS is slightly lower than that of Seg Net (23.09 ± 1.26 vs. 30.42 ± 3.57). Cortical bone can be effectively segmented based on 3D U-net.

摘要

我们开发了一种基于3D U-Net的深度卷积神经网络,用于自动分割椎骨皮质。本研究的目的是评估3D U-Net深度学习模型的准确性。在本研究中,开发了一种使用3D U-Net的全自动椎骨皮质分割方法,并采用了十折交叉验证。通过数据增强,我们获得了1672张胸部CT扫描的3D图像。使用传统图像处理方法进行分割,并由一位资深放射科医生进行手动校正以创建金标准。为了比较分割性能,使用3D U-Net、Res U-Net、Ki U-Net和Seg Net对CT图像中的椎骨皮质进行分割。使用DSC、mIoU、MPA和FPS评估3D U-Net和其他三种深度学习算法的分割性能。3D U-Net的DSC、mIoU和MPA优于其他三种策略,分别达到0.71±0.03、0.74±0.08和0.83±0.02,表明自动分割结果很有前景。FPS略低于Seg Net(23.09±1.26对30.42±3.57)。基于3D U-net可以有效地分割皮质骨。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c9/9626964/1ee151cacfd9/fbioe-10-996723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验