Bloem Audrey, Sanchez Isabelle, Dequin Sylvie, Camarasa Carole
Université Montpellier, UMR1083, Montpellier, France; INRA, UMR1083, Montpellier, France; SupAgro, UMR1083, Montpellier, France
Université Montpellier, UMR1083, Montpellier, France; INRA, UMR1083, Montpellier, France; SupAgro, UMR1083, Montpellier, France.
Appl Environ Microbiol. 2015 Oct 16;82(1):174-83. doi: 10.1128/AEM.02429-15. Print 2016 Jan 1.
Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD(+)/NADH or, to a lesser extent, NADP(+)/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation.
氧化还原稳态是酿酒酵母维持新陈代谢、能量产生和生长的基本要求。氧化还原辅因子NADH和NADPH是代谢网络中连接最为紧密的代谢物之一。它们浓度的变化可能会引起新陈代谢的广泛变化。在乙偶姻存在的情况下,使用一种专门的生物学工具过表达天然的依赖NADH的或工程改造的依赖NADPH的2,3-丁二醇脱氢酶,从而实现氧化还原失衡。我们报告称,对辅因子平衡(NAD⁺/NADH或在较小程度上NADP⁺/NADPH)进行靶向扰动会显著影响挥发性化合物的产生。在大多数情况下,酵母氧化还原状态的变化会改变来自同一生化途径(异丁醇、异戊醇及其衍生物)或化学类别(乙酯)的所有化合物的形成,而与辅因子无关。这些协同反应被发现与氧化还原状态对中心碳代谢中间体可用性的影响密切相关。α-酮酸和乙酰辅酶A(乙酰-CoA)就是这种情况,它们是许多挥发性化合物合成的前体。我们还证明,NADH可用性的变化会选择性地影响一些挥发性分子(如甲硫醇、苯乙醇和丙酸)的合成,这反映了参与其形成的脱氢酶对特定辅因子的需求。我们的研究结果表明,中心碳代谢前体的可用性和还原型辅因子的可及性都有助于细胞氧化还原状态对挥发性化合物形成的调节。