Suppr超能文献

通过冷离子束雕刻制备的纳米级固态纳米孔

Nanometer-thin solid-state nanopores by cold ion beam sculpting.

作者信息

Kuan Aaron T, Golovchenko Jene A

出版信息

Appl Phys Lett. 2012 May 21;100(21):213104-2131044. doi: 10.1063/1.4719679.

Abstract

Recent work on protein nanopores indicates that single molecule characterization (including DNA sequencing) is possible when the length of the nanopore constriction is about a nanometer. Solid-state nanopores offer advantages in stability and tunability, but a scalable method for creating nanometer-thin solid-state pores has yet to be demonstrated. Here we demonstrate that solid-state nanopores with nanometer-thin constrictions can be produced by "cold ion beam sculpting," an original method that is broadly applicable to many materials, is easily scalable, and requires only modest instrumentation.

摘要

近期关于蛋白质纳米孔的研究表明,当纳米孔收缩部分的长度约为一纳米时,单分子表征(包括DNA测序)是可行的。固态纳米孔在稳定性和可调性方面具有优势,但尚未证明有一种可扩展的方法来制造纳米级薄的固态孔。在这里,我们证明了具有纳米级薄收缩部分的固态纳米孔可以通过“冷离子束雕刻”来制造,这是一种原始方法,广泛适用于多种材料,易于扩展,并且只需要普通的仪器设备。

相似文献

1
Nanometer-thin solid-state nanopores by cold ion beam sculpting.
Appl Phys Lett. 2012 May 21;100(21):213104-2131044. doi: 10.1063/1.4719679.
2
Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
J Phys Condens Matter. 2010 Nov 17;22(45):454128. doi: 10.1088/0953-8984/22/45/454128. Epub 2010 Oct 29.
3
Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
ACS Nano. 2021 Jul 27;15(7):12189-12200. doi: 10.1021/acsnano.1c03773. Epub 2021 Jul 5.
4
Solid-state nanopore fabrication by automated controlled breakdown.
Nat Protoc. 2020 Jan;15(1):122-143. doi: 10.1038/s41596-019-0255-2. Epub 2019 Dec 13.
6
Fabrication and Applications of Solid-State Nanopores.
Sensors (Basel). 2019 Apr 20;19(8):1886. doi: 10.3390/s19081886.
7
Ion-beam sculpting at nanometre length scales.
Nature. 2001 Jul 12;412(6843):166-9. doi: 10.1038/35084037.
8
DNA translocation through an array of kinked nanopores.
Nat Mater. 2010 Aug;9(8):667-75. doi: 10.1038/nmat2805.
9
Simple Fabrication of Solid-State Nanopores on a Carbon Film.
Micromachines (Basel). 2021 Sep 21;12(9):1135. doi: 10.3390/mi12091135.
10
Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores.
Adv Exp Med Biol. 2019;1129:131-142. doi: 10.1007/978-981-13-6037-4_9.

引用本文的文献

1
Nanopore-Based Neurotransmitter Detection: Advances, Challenges, and Future Perspectives.
ACS Nano. 2025 Jul 15;19(27):24404-24424. doi: 10.1021/acsnano.5c04662. Epub 2025 Jun 29.
2
Controllable Shrinking Fabrication of Solid-State Nanopores.
Micromachines (Basel). 2022 Jun 10;13(6):923. doi: 10.3390/mi13060923.
3
Electrical pulse fabrication of graphene nanopores in electrolyte solution.
Appl Phys Lett. 2015 May 18;106(20):203109. doi: 10.1063/1.4921620. Epub 2015 May 22.
4
The effects of geometry and stability of solid-state nanopores on detecting single DNA molecules.
Nanotechnology. 2015 Jan 30;26(4):044001. doi: 10.1088/0957-4484/26/4/044001. Epub 2015 Jan 5.
5
Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.
Anal Chem. 2015 Jan 6;87(1):172-87. doi: 10.1021/ac504180h. Epub 2014 Dec 3.
6
Programmed synthesis of freestanding graphene nanomembrane arrays.
Small. 2015 Feb 4;11(5):597-603. doi: 10.1002/smll.201402230. Epub 2014 Sep 18.
7
Nanopore fabrication by controlled dielectric breakdown.
PLoS One. 2014 Mar 21;9(3):e92880. doi: 10.1371/journal.pone.0092880. eCollection 2014.
8
Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
Nat Nanotechnol. 2013 Dec;8(12):939-45. doi: 10.1038/nnano.2013.240. Epub 2013 Nov 17.
9
Slow DNA transport through nanopores in hafnium oxide membranes.
ACS Nano. 2013 Nov 26;7(11):10121-10128. doi: 10.1021/nn404326f. Epub 2013 Oct 4.
10
Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection.
ACS Nano. 2013 Jun 25;7(6):5621-7. doi: 10.1021/nn4020642. Epub 2013 May 28.

本文引用的文献

1
Atom-by-atom nucleation and growth of graphene nanopores.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5953-7. doi: 10.1073/pnas.1119827109. Epub 2012 Apr 6.
2
Focused ion beam induced deflections of freestanding thin films.
J Appl Phys. 2006 Nov 15;100(10):104322-104330. doi: 10.1063/1.2363900.
3
Thermal activation and saturation of ion beam sculpting.
J Appl Phys. 2011 Apr 1;109(7):74312-743124. doi: 10.1063/1.3569705. Epub 2011 Apr 7.
4
Nanopore sculpting with noble gas ions.
J Appl Phys. 2006;100(2):24914-249146. doi: 10.1063/1.2216880.
5
Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors.
Nat Nanotechnol. 2010 Nov;5(11):807-14. doi: 10.1038/nnano.2010.202. Epub 2010 Oct 24.
6
Graphene as a subnanometre trans-electrode membrane.
Nature. 2010 Sep 9;467(7312):190-3. doi: 10.1038/nature09379. Epub 2010 Aug 18.
7
DNA translocation through graphene nanopores.
Nano Lett. 2010 Aug 11;10(8):2915-21. doi: 10.1021/nl101046t.
8
DNA translocation through graphene nanopores.
Nano Lett. 2010 Aug 11;10(8):3163-7. doi: 10.1021/nl102069z.
9
Probing surface charge fluctuations with solid-state nanopores.
Phys Rev Lett. 2009 Jun 26;102(25):256804. doi: 10.1103/PhysRevLett.102.256804.
10
Control of shape and material composition of solid-state nanopores.
Nano Lett. 2009 Jan;9(1):479-84. doi: 10.1021/nl803613s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验