Department of Psychology-Cognitive Psychology, University of Zurich, Binzmühlestrasse 14/22, 8050 Zürich, Switzerland.
Psychon Bull Rev. 2012 Oct;19(5):779-819. doi: 10.3758/s13423-012-0272-4.
This article introduces a new computational model for the complex-span task, the most popular task for studying working memory. SOB-CS is a two-layer neural network that associates distributed item representations with distributed, overlapping position markers. Memory capacity limits are explained by interference from a superposition of associations. Concurrent processing interferes with memory through involuntary encoding of distractors. Free time in-between distractors is used to remove irrelevant representations, thereby reducing interference. The model accounts for benchmark findings in four areas: (1) effects of processing pace, processing difficulty, and number of processing steps; (2) effects of serial position and error patterns; (3) effects of different kinds of item-distractor similarity; and (4) correlations between span tasks. The model makes several new predictions in these areas, which were confirmed experimentally.
本文介绍了一种用于复杂跨度任务的新计算模型,该任务是研究工作记忆最流行的任务。SOB-CS 是一个两层神经网络,它将分布式项目表示与分布式、重叠的位置标记相关联。记忆容量限制是通过叠加关联的干扰来解释的。通过对干扰物的无意识编码,并发处理会干扰记忆。在干扰物之间的空闲时间用于删除不相关的表示,从而减少干扰。该模型解释了四个领域的基准研究结果:(1)处理速度、处理难度和处理步骤数量的影响;(2)序列位置和错误模式的影响;(3)不同类型的项目-干扰物相似性的影响;以及(4)跨度任务之间的相关性。该模型在这些领域做出了几个新的预测,这些预测得到了实验验证。