Suppr超能文献

从执行网络到执行控制:n-back 任务的计算模型。

From an executive network to executive control: a computational model of the n-back task.

机构信息

University of Colorado, Boulder, CO 80302, USA.

出版信息

J Cogn Neurosci. 2011 Nov;23(11):3598-619. doi: 10.1162/jocn_a_00047. Epub 2011 May 12.

Abstract

A paradigmatic test of executive control, the n-back task, is known to recruit a widely distributed parietal, frontal, and striatal "executive network," and is thought to require an equally wide array of executive functions. The mapping of functions onto substrates in such a complex task presents a significant challenge to any theoretical framework for executive control. To address this challenge, we developed a biologically constrained model of the n-back task that emergently develops the ability to appropriately gate, bind, and maintain information in working memory in the course of learning to perform the task. Furthermore, the model is sensitive to proactive interference in ways that match findings from neuroimaging and shows a U-shaped performance curve after manipulation of prefrontal dopaminergic mechanisms similar to that observed in studies of genetic polymorphisms and pharmacological manipulations. Our model represents a formal computational link between anatomical, functional neuroimaging, genetic, behavioral, and theoretical levels of analysis in the study of executive control. In addition, the model specifies one way in which the pFC, BG, parietal, and sensory cortices may learn to cooperate and give rise to executive control.

摘要

作为执行控制的典型测试,n-回任务被认为需要广泛的执行功能,已知会招募广泛分布的顶叶、额叶和纹状体“执行网络”。在如此复杂的任务中,将功能映射到基质上对任何执行控制的理论框架都是一个重大挑战。为了应对这一挑战,我们开发了一种受生物约束的 n-回任务模型,该模型在学习执行任务的过程中能够主动发展出适当的门控、绑定和在工作记忆中保持信息的能力。此外,该模型对前馈多巴胺能机制的操作表现出与神经影像学发现相匹配的主动干扰敏感性,并且在对遗传多态性和药物处理的研究中观察到的类似方式下,表现出 U 形性能曲线。我们的模型代表了执行控制研究中解剖学、功能神经影像学、遗传学、行为和理论分析水平之间的正式计算联系。此外,该模型指定了前额叶皮层、基底神经节、顶叶和感觉皮层可能学会合作并产生执行控制的一种方式。

相似文献

1
From an executive network to executive control: a computational model of the n-back task.
J Cogn Neurosci. 2011 Nov;23(11):3598-619. doi: 10.1162/jocn_a_00047. Epub 2011 May 12.
2
A neural network model of individual differences in task switching abilities.
Neuropsychologia. 2014 Sep;62:375-89. doi: 10.1016/j.neuropsychologia.2014.04.014. Epub 2014 Apr 30.
3
Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.
Cogn Affect Behav Neurosci. 2012 Jun;12(2):241-68. doi: 10.3758/s13415-011-0083-5.
5
The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
J Neurosci. 2016 Nov 30;36(48):12083-12094. doi: 10.1523/JNEUROSCI.2965-15.2016.
7
Sex differences in network controllability as a predictor of executive function in youth.
Neuroimage. 2019 Mar;188:122-134. doi: 10.1016/j.neuroimage.2018.11.048. Epub 2018 Dec 1.
8
Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory.
Cogn Affect Behav Neurosci. 2020 Feb;20(1):76-90. doi: 10.3758/s13415-019-00753-9.
10
Executive dysfunction is associated with an altered executive control network in pediatric temporal lobe epilepsy.
Epilepsy Behav. 2018 Sep;86:145-152. doi: 10.1016/j.yebeh.2018.04.022. Epub 2018 Jul 9.

引用本文的文献

1
The latent structure of working memory: A large sample factor model of working memory capacity.
Cogn Affect Behav Neurosci. 2025 Jun 2. doi: 10.3758/s13415-025-01310-3.
3
A computational approach to the N-back task.
Sci Rep. 2024 Dec 4;14(1):30211. doi: 10.1038/s41598-024-80537-5.
5
Evidence for separate backward recall and -back working memory factors: a large-scale latent variable analysis.
Memory. 2024 Oct;32(9):1182-1198. doi: 10.1080/09658211.2024.2393388. Epub 2024 Aug 26.
6
Executive Functions in Social Context: Implications for Conceptualizing, Measuring, and Supporting Developmental Trajectories.
Annu Rev Dev Psychol. 2021;3(1):139-163. doi: 10.1146/annurev-devpsych-121318-085005. Epub 2021 Sep 13.
7
Two Attentional Processes Subserving Working Memory Differentiate Gifted and Mainstream Students.
J Cogn. 2024 May 23;7(1):47. doi: 10.5334/joc.370. eCollection 2024.
9
Can we enhance working memory? Bias and effectiveness in cognitive training studies.
Psychon Bull Rev. 2024 Oct;31(5):1891-1914. doi: 10.3758/s13423-024-02466-8. Epub 2024 Feb 16.
10
A Multinomial Processing Tree Model of the 2-back Working Memory Task.
Comput Brain Behav. 2022 Sep;5(3):261-278. doi: 10.1007/s42113-022-00138-1. Epub 2022 Jun 7.

本文引用的文献

1
A working memory account for spatial-numerical associations.
Cognition. 2011 Apr;119(1):114-9. doi: 10.1016/j.cognition.2010.12.013. Epub 2011 Jan 22.
3
Neural mechanisms of acquired phasic dopamine responses in learning.
Neurosci Biobehav Rev. 2010 Apr;34(5):701-20. doi: 10.1016/j.neubiorev.2009.11.019. Epub 2009 Nov 26.
5
Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.
J Neurosci. 2009 Apr 8;29(14):4369-80. doi: 10.1523/JNEUROSCI.0164-09.2009.
6
Mechanism for top-down control of working memory capacity.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6802-7. doi: 10.1073/pnas.0901894106. Epub 2009 Apr 1.
8
Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain.
Neurosurgery. 2008 Jun;62(6 Suppl 3):989-1026; discussion 1026-8. doi: 10.1227/01.neu.0000333767.05328.49.
9
Transfer of learning after updating training mediated by the striatum.
Science. 2008 Jun 13;320(5882):1510-2. doi: 10.1126/science.1155466.
10
Individual differences in executive functions are almost entirely genetic in origin.
J Exp Psychol Gen. 2008 May;137(2):201-225. doi: 10.1037/0096-3445.137.2.201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验