Medical University of Vienna, Christian Doppler Laboratory Infection Biology, Max F. Perutz Laboratories, A-1030 Vienna, Austria.
Curr Opin Microbiol. 2012 Aug;15(4):440-6. doi: 10.1016/j.mib.2012.05.001. Epub 2012 Jun 19.
Modeling interactions between fungi and their hosts at the systems level requires a molecular understanding both of how the host orchestrates immune surveillance and tolerance, and how this activation, in turn, affects fungal adaptation and survival. The transition from the commensal to pathogenic state, and the co-evolution of fungal strains within their hosts, necessitates the molecular dissection of fungal traits responsible for these interactions. There has been a dramatic increase in publically available genome-wide resources addressing fungal pathophysiology and host-fungal immunology. The integration of these existing data and emerging large-scale technologies addressing host-pathogen interactions requires novel tools to connect genome-wide data sets and theoretical approaches with experimental validation so as to identify inherent and emerging properties of host-pathogen relationships and to obtain a holistic view of infectious processes. If successful, a better understanding of the immune response in health and microbial diseases will eventually emerge and pave the way for improved therapies.
在系统水平上对真菌与其宿主之间的相互作用进行建模,需要从分子水平上理解宿主如何协调免疫监视和耐受,以及这种激活反过来如何影响真菌的适应和存活。从共生到致病状态的转变,以及真菌菌株在其宿主内的共同进化,需要对负责这些相互作用的真菌特性进行分子剖析。目前,公开提供的用于研究真菌病理生理学和宿主-真菌免疫学的全基因组资源急剧增加。要整合这些现有数据和新兴的大规模技术来处理宿主-病原体相互作用,就需要新的工具来连接全基因组数据集和理论方法与实验验证,以便识别宿主-病原体关系的固有和新兴特性,并获得传染病过程的整体视图。如果成功,将最终对健康和微生物疾病中的免疫反应有更好的理解,并为改进治疗方法铺平道路。