Suppr超能文献

在正电子发射断层扫描中跟踪和描述未麻醉大鼠的头部运动。

Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography.

机构信息

School of Physics, University of Sydney, Camperdown, New South Wales 2006, Australia.

出版信息

J R Soc Interface. 2012 Nov 7;9(76):3094-107. doi: 10.1098/rsif.2012.0334. Epub 2012 Jun 20.

Abstract

Positron emission tomography (PET) is an important in vivo molecular imaging technique for translational research. Imaging unanaesthetized rats using motion-compensated PET avoids the confounding impact of anaesthetic drugs and enables animals to be imaged during normal or evoked behaviour. However, there is little published data on the nature of rat head motion to inform the design of suitable marker-based motion-tracking set-ups for brain imaging-specifically, set-ups that afford close to uninterrupted tracking. We performed a systematic study of rat head motion parameters for unanaesthetized tube-bound and freely moving rats with a view to designing suitable motion-tracking set-ups in each case. For tube-bound rats, using a single appropriately placed binocular tracker, uninterrupted tracking was possible greater than 95 per cent of the time. For freely moving rats, simulations and measurements of a live subject indicated that two opposed binocular trackers are sufficient (less than 10% interruption to tracking) for a wide variety of behaviour types. We conclude that reliable tracking of head pose can be achieved with marker-based optical-motion-tracking systems for both tube-bound and freely moving rats undergoing PET studies without sedation.

摘要

正电子发射断层扫描(PET)是转化研究中一种重要的体内分子成像技术。使用运动补偿 PET 对未麻醉的大鼠进行成像可以避免麻醉药物的干扰,并使动物能够在正常或诱发的行为期间进行成像。然而,关于大鼠头部运动的性质,几乎没有发表的数据可以为适合用于大脑成像的基于标记的运动跟踪设置提供信息,具体来说,是那种可以提供近乎不间断跟踪的设置。我们对未麻醉的管内束缚和自由移动的大鼠的头部运动参数进行了系统研究,以期在每种情况下设计合适的运动跟踪设置。对于管内束缚的大鼠,使用单个适当放置的双目跟踪器,可以在超过 95%的时间内实现不间断跟踪。对于自由移动的大鼠,对活体的模拟和测量表明,对于各种行为类型,两个相对的双目跟踪器就足够了(跟踪中断小于 10%)。我们得出结论,对于进行 PET 研究的管内束缚和自由移动的大鼠,基于标记的光学运动跟踪系统可以可靠地跟踪头部姿势,而无需镇静。

相似文献

1
Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography.
J R Soc Interface. 2012 Nov 7;9(76):3094-107. doi: 10.1098/rsif.2012.0334. Epub 2012 Jun 20.
2
Optimised motion tracking for positron emission tomography studies of brain function in awake rats.
PLoS One. 2011;6(7):e21727. doi: 10.1371/journal.pone.0021727. Epub 2011 Jul 1.
3
Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals.
Phys Med Biol. 2017 Mar 7;62(5):1744-1758. doi: 10.1088/1361-6560/aa5a46. Epub 2017 Jan 19.
5
PET imaging of freely moving interacting rats.
Neuroimage. 2019 May 1;191:560-567. doi: 10.1016/j.neuroimage.2019.02.064. Epub 2019 Mar 2.
6
Markerless motion tracking of awake animals in positron emission tomography.
IEEE Trans Med Imaging. 2014 Nov;33(11):2180-90. doi: 10.1109/TMI.2014.2332821. Epub 2014 Jun 26.
7
Motion compensation for fully 4D PET reconstruction using PET superset data.
Phys Med Biol. 2010 Jul 21;55(14):4063-82. doi: 10.1088/0031-9155/55/14/008. Epub 2010 Jul 5.
8
Optimising rigid motion compensation for small animal brain PET imaging.
Phys Med Biol. 2016 Oct 7;61(19):7074-7091. doi: 10.1088/0031-9155/61/19/7074. Epub 2016 Sep 20.
9
Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET.
Phys Med Biol. 2015 Nov 21;60(22):8753-66. doi: 10.1088/0031-9155/60/22/8753. Epub 2015 Nov 3.
10
Markerless motion estimation for motion-compensated clinical brain imaging.
Phys Med Biol. 2018 May 17;63(10):105018. doi: 10.1088/1361-6560/aabd48.

引用本文的文献

本文引用的文献

1
Optimised motion tracking for positron emission tomography studies of brain function in awake rats.
PLoS One. 2011;6(7):e21727. doi: 10.1371/journal.pone.0021727. Epub 2011 Jul 1.
2
Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph.
Nat Methods. 2011 Apr;8(4):347-52. doi: 10.1038/nmeth.1582. Epub 2011 Mar 13.
3
Small-animal positron emission tomography as a tool for neuropharmacology.
Trends Pharmacol Sci. 2010 Sep;31(9):411-7. doi: 10.1016/j.tips.2010.06.002. Epub 2010 Jul 6.
4
An event-driven motion correction method for neurological PET studies of awake laboratory animals.
Mol Imaging Biol. 2008 Nov-Dec;10(6):315-24. doi: 10.1007/s11307-008-0157-0. Epub 2008 Aug 1.
5
Real-time 3D motion tracking for small animal brain PET.
Phys Med Biol. 2008 May 21;53(10):2651-66. doi: 10.1088/0031-9155/53/10/014. Epub 2008 Apr 29.
6
Imaging dopamine release with Positron Emission Tomography (PET) and (11)C-raclopride in freely moving animals.
Neuroimage. 2008 Jul 1;41(3):1051-66. doi: 10.1016/j.neuroimage.2008.02.065. Epub 2008 Mar 19.
7
Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans Med Imaging. 1994;13(4):601-9. doi: 10.1109/42.363108.
9
Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat.
Neuroimage. 2006 Aug 1;32(1):33-48. doi: 10.1016/j.neuroimage.2006.02.021. Epub 2006 May 24.
10
Excitatory and inhibitory actions of isoflurane on the cholinergic ascending arousal system of the rat.
Anesthesiology. 2006 Jan;104(1):122-33. doi: 10.1097/00000542-200601000-00018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验