文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

半自动化图像分析在北极深海观测站豪斯加滕评估巨型动物密度中的应用。

Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN.

机构信息

Biodata Mining Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany.

出版信息

PLoS One. 2012;7(6):e38179. doi: 10.1371/journal.pone.0038179. Epub 2012 Jun 5.


DOI:10.1371/journal.pone.0038179
PMID:22719868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3367988/
Abstract

Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS.

摘要

巨型动物在底栖生态系统功能中发挥着重要作用,是环境变化的敏感指标。通过海底成像可以实现对底栖生物群落的非侵入性监测。然而,对图像中的巨型动物进行手动量化是劳动密集型的,因此,在生态系统研究中,这个生物体大小类群通常被忽略。自动化图像分析被认为是一种可能的分析方法,但巨型动物群落的异质性给这种自动化技术带来了非平凡的挑战。在这里,一种通用的目标检测架构,称为 iSIS(水下图像序列的智能筛选),被用于研究异构巨型动物分类群的量化。iSIS 系统使用专家先前标记过巨型动物分类群位置的一小部分图像对特定的图像序列(即一条横剖线)进行调整。为了研究 iSIS 的潜力并将其结果与人类专家的结果进行比较,使用了从北极深海观测站 HAUSGARTEN 拍摄的海底图像的一个摄像机横剖线的八个不同的分类群。结果表明,人类专家的观察者间和观察者内的一致性在物种之间存在相当大的差异,而 iSIS 自动得出的结果也存在类似程度的变化。虽然有些分类群(例如,Bathycrinus 茎干、Kolga hyalina、小白色海葵)被 iSIS 很好地检测到(即整体敏感性:87%,整体阳性预测值:67%),但有些分类群,如小型海参 Elpidia heckeri,对人类观察者和 iSIS 来说都具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/624a2d12d709/pone.0038179.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/b48c2cfed59b/pone.0038179.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/74836fc81feb/pone.0038179.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/ca4f33080bd8/pone.0038179.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/d989c610c53a/pone.0038179.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/5884c33c3c7a/pone.0038179.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/a2bd13e758b1/pone.0038179.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/3fd53f94f469/pone.0038179.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/624a2d12d709/pone.0038179.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/b48c2cfed59b/pone.0038179.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/74836fc81feb/pone.0038179.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/ca4f33080bd8/pone.0038179.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/d989c610c53a/pone.0038179.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/5884c33c3c7a/pone.0038179.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/a2bd13e758b1/pone.0038179.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/3fd53f94f469/pone.0038179.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5ba/3367988/624a2d12d709/pone.0038179.g008.jpg

相似文献

[1]
Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN.

PLoS One. 2012-6-5

[2]
Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls.

PLoS One. 2019-7-16

[3]
Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait).

PLoS One. 2015-10-14

[4]
Biogeography of Deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic).

PLoS One. 2013-9-2

[5]
The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

Sensors (Basel). 2011-5-31

[6]
Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna.

Sci Rep. 2018-8-27

[7]
Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands.

Sci Rep. 2020-8-17

[8]
Increase of litter at the Arctic deep-sea observatory HAUSGARTEN.

Mar Pollut Bull. 2012-10-17

[9]
Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

Adv Mar Biol. 2010

[10]
Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network.

Sensors (Basel). 2011-11-4

引用本文的文献

[1]
High-resolution density assessment assisted by deep learning of (Lamarck, 1816) and (Linnaeus, 1767) in rocky circalittoral shelf of Bay of Biscay.

PeerJ. 2024-3-7

[2]
PlasPi TDM: Augmentation of a low-cost camera platform for advanced underwater physical-ecological observations.

HardwareX. 2023-8-28

[3]
An automated image-based workflow for detecting megabenthic fauna in optical images with examples from the Clarion-Clipperton Zone.

Sci Rep. 2023-5-23

[4]
Applications of Machine Learning in Chemical and Biological Oceanography.

ACS Omega. 2023-4-27

[5]
In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements.

Sensors (Basel). 2023-2-10

[6]
Underwater Holothurian Target-Detection Algorithm Based on Improved CenterNet and Scene Feature Fusion.

Sensors (Basel). 2022-9-22

[7]
Benthic Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on Climate Change in Shallow Waters of the Antarctic Peninsula.

Biology (Basel). 2022-2-17

[8]
Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean).

Biodivers Data J. 2021-9-28

[9]
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy.

Sensors (Basel). 2021-10-7

[10]
ALMI-A Generic Active Learning System for Computational Object Classification in Marine Observation Images.

Sensors (Basel). 2021-2-6

本文引用的文献

[1]
A cluster separation measure.

IEEE Trans Pattern Anal Mach Intell. 1979-2

[2]
Time to automate identification.

Nature. 2010-9-9

[3]
Climate, carbon cycling, and deep-ocean ecosystems.

Proc Natl Acad Sci U S A. 2009-11-17

[4]
Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific.

Ecology. 2007-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索