文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络和图像增强的多水下场景中海参与检测。

In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements.

机构信息

Coastal Defense College, Naval Aeronautical University, Yantai 264003, China.

Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

出版信息

Sensors (Basel). 2023 Feb 10;23(4):2037. doi: 10.3390/s23042037.


DOI:10.3390/s23042037
PMID:36850633
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9962839/
Abstract

Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies. However, underwater object detection and recognition are suffering from the image distortion and degradation issues. In this work, automatic monitoring of sea cucumber in natural conditions is implemented based on a state-of-the-art object detector, YOLOv7. To depress the image distortion and degradation issues, image enhancement methods are adopted to improve the accuracy and stability of sea cucumber detection across multiple underwater scenes. Five well-known image enhancement methods are employed to improve the detection performance of sea cucumber by YOLOv7 and YOLOv5. The effectiveness of these image enhancement methods is evaluated by experiments. Non-local image dehazing (NLD) was the most effective in sea cucumber detection from multiple underwater scenes for both YOLOv7 and YOLOv5. The best average precision (AP) of sea cucumber detection was 0.940, achieved by YOLOv7 with NLD. With NLD enhancement, the APs of YOLOv7 and YOLOv5 were increased by 1.1% and 1.6%, respectively. The best AP was 2.8% higher than YOLOv5 without image enhancement. Moreover, the real-time ability of YOLOv7 was examined and its average prediction time was 4.3 ms. Experimental results demonstrated that the proposed method can be applied to marine organism surveying by underwater mobile platforms or automatic analysis of underwater videos.

摘要

最近,快速发展的人工智能和计算机视觉技术为提高水产养殖和海洋资源调查的生产效率和降低劳动力成本提供了技术解决方案。传统的手动调查正逐渐被先进的智能技术所取代。然而,水下目标检测和识别仍受到图像失真和降质问题的困扰。在这项工作中,基于先进的目标检测器 YOLOv7 实现了自然条件下海参的自动监测。为了抑制图像失真和降质问题,采用图像增强方法来提高 YOLOv7 在多个水下场景中海参检测的准确性和稳定性。采用了五种著名的图像增强方法来提高 YOLOv7 和 YOLOv5 对海参的检测性能。通过实验评估了这些图像增强方法的有效性。非局部图像去雾(NLD)在 YOLOv7 和 YOLOv5 对多个水下场景中海参检测中最为有效。使用 NLD 增强后,YOLOv7 和 YOLOv5 的海参检测平均精度(AP)分别提高了 1.1%和 1.6%。使用 NLD 增强后的最佳 AP 比没有图像增强的 YOLOv5 高 2.8%。此外,还检查了 YOLOv7 的实时能力,其平均预测时间为 4.3ms。实验结果表明,该方法可应用于水下移动平台的海洋生物调查或水下视频的自动分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/d90c92c51bbf/sensors-23-02037-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/3bfa83cb63e7/sensors-23-02037-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/9a4b7e170381/sensors-23-02037-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/9d05b1c2bd4b/sensors-23-02037-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/153457e65bfe/sensors-23-02037-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/3a020206c3cc/sensors-23-02037-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/62a442f4def0/sensors-23-02037-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/b355e2df227d/sensors-23-02037-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/1cced9a73769/sensors-23-02037-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/d90c92c51bbf/sensors-23-02037-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/3bfa83cb63e7/sensors-23-02037-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/9a4b7e170381/sensors-23-02037-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/9d05b1c2bd4b/sensors-23-02037-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/153457e65bfe/sensors-23-02037-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/3a020206c3cc/sensors-23-02037-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/62a442f4def0/sensors-23-02037-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/b355e2df227d/sensors-23-02037-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/1cced9a73769/sensors-23-02037-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbb7/9962839/d90c92c51bbf/sensors-23-02037-g009.jpg

相似文献

[1]
In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements.

Sensors (Basel). 2023-2-10

[2]
IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments.

Sensors (Basel). 2023-1-25

[3]
Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach.

Biomimetics (Basel). 2023-8-4

[4]
A fine-tuned YOLOv5 deep learning approach for real-time house number detection.

PeerJ Comput Sci. 2023-7-3

[5]
Lightweight model-based sheep face recognition via face image recording channel.

J Anim Sci. 2024-1-3

[6]
An Improved YOLOv5-Based Underwater Object-Detection Framework.

Sensors (Basel). 2023-4-3

[7]
UICE-MIRNet guided image enhancement for underwater object detection.

Sci Rep. 2024-9-28

[8]
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications.

Eur Phys J E Soft Matter. 2023-5-8

[9]
YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning.

Plants (Basel). 2023-8-7

[10]
A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard.

Plants (Basel). 2022-11-27

引用本文的文献

[1]
Underwater Target Detection Based on Parallel High-Resolution Networks.

Sensors (Basel). 2023-8-23

本文引用的文献

[1]
Sea Cucumber Detection Algorithm Based on Deep Learning.

Sensors (Basel). 2022-7-30

[2]
A Marine Organism Detection Framework Based on the Joint Optimization of Image Enhancement and Object Detection.

Sensors (Basel). 2021-10-29

[3]
The Modular Optical Underwater Survey System.

Sensors (Basel). 2017-10-11

[4]
Deep learning.

Nature. 2015-5-28

[5]
Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN.

PLoS One. 2012-6-5

[6]
Sea cucumber aquaculture in the Western Indian ocean: challenges for sustainable livelihood and stock improvement.

Ambio. 2011-10-20

[7]
High-value components and bioactives from sea cucumbers for functional foods--a review.

Mar Drugs. 2011-10-10

[8]
Single Image Haze Removal Using Dark Channel Prior.

IEEE Trans Pattern Anal Mach Intell. 2010-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索