Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
Microb Cell Fact. 2012 Jun 21;11:87. doi: 10.1186/1475-2859-11-87.
It has long been recognized that analyzing the behaviour of the complex intracellular biological networks is important for breeding industrially useful microorganisms. However, because of the complexity of these biological networks, it is currently not possible to obtain all the desired microorganisms. In this study, we constructed a system for analyzing the effect of gene expression perturbations on the behavior of biological networks in Escherichia coli. Specifically, we utilized (13)C metabolic flux analysis ((13)C-MFA) to analyze the effect of perturbations to the expression levels of pgi and eno genes encoding phosphoglucose isomerase and enolase, respectively on metabolic fluxes.
We constructed gene expression-controllable E. coli strains using a single-copy mini F plasmid. Using the pgi expression-controllable strain, we found that the specific growth rate correlated with the pgi expression level. (13)C-MFA of this strain revealed that the fluxes for the pentose phosphate pathway and Entner-Doudoroff pathway decreased, as the pgi expression lelvel increased. In addition, the glyoxylate shunt became active when the pgi expression level was almost zero. Moreover, the flux for the glyoxylate shunt increased when the pgi expression level decreased, but was significantly reduced in the pgi-knockout cells. Comparatively, eno expression could not be decreased compared to the parent strain, but we found that increased eno expression resulted in a decreased specific growth rate. (13)C-MFA revealed that the metabolic flux distribution was not altered by an increased eno expression level, but the overall metabolic activity of the central metabolism decreased. Furthermore, to evaluate the impact of perturbed expression of pgi and eno genes on changes in metabolic fluxes in E. coli quantitatively, metabolic sensitivity analysis was performed. As a result, the perturbed expression of pgi gene had a great impact to the metabolic flux changes in the branch point between the glycolysis and pentose phosphate pathway, isocitrate dehydrogenase reaction, anaplerotic pathways and Entner-Doudoroff pathway. In contrast, the impact of perturbed eno expression to the flux changes in E. coli metabolic network was small.
Our results indicate that the response of metabolic fluxes to perturbation to pgi expression was different from that to eno expression; perturbations to pgi expression affect the reaction related to the Pgi protein function, the isocitrate dehydrogenase reaction, anaplerotic reactions and Entner-Doudoroff pathway. Meanwhile, eno expression seems to affect the overall metabolic activity, and the impact of perturbed eno expression on metabolic flux change is small. Using the gene expression control system reported here, it is expected that we can analyze the response and adaptation process of complex biological networks to gene expression perturbations.
长期以来,人们一直认识到分析复杂的细胞内生物网络的行为对于培育工业上有用的微生物非常重要。然而,由于这些生物网络的复杂性,目前还不可能获得所有所需的微生物。在这项研究中,我们构建了一个用于分析基因表达扰动对大肠杆菌中生物网络行为影响的系统。具体来说,我们利用(13)C 代谢通量分析((13)C-MFA)来分析分别编码磷酸葡萄糖异构酶和烯醇酶的 pgi 和 eno 基因表达水平扰动对代谢通量的影响。
我们使用单拷贝 mini F 质粒构建了基因表达可控的大肠杆菌菌株。使用 pgi 表达可控菌株,我们发现比生长速率与 pgi 表达水平相关。对该菌株进行(13)C-MFA 分析表明,当 pgi 表达水平增加时,戊糖磷酸途径和 Entner-Doudoroff 途径的通量降低。此外,当 pgi 表达水平几乎为零时,乙醛酸支路变得活跃。此外,当 pgi 表达水平降低时,乙醛酸支路的通量增加,但在 pgi 敲除细胞中显著降低。相比之下,eno 表达不能比亲本菌株降低,但我们发现增加 eno 表达导致比生长速率降低。(13)C-MFA 表明,增加的 eno 表达水平不会改变代谢通量分布,但中央代谢的整体代谢活性降低。此外,为了定量评估 pgi 和 eno 基因表达扰动对大肠杆菌代谢通量变化的影响,进行了代谢敏感性分析。结果表明,pgi 基因的扰动表达对糖酵解和戊糖磷酸途径分支点、异柠檬酸脱氢酶反应、补料途径和 Entner-Doudoroff 途径的代谢通量变化有很大影响。相比之下,eno 表达扰动对大肠杆菌代谢网络通量变化的影响较小。
我们的结果表明,代谢通量对 pgi 表达扰动的响应与 eno 表达扰动的响应不同;pgi 表达的扰动影响与 Pgi 蛋白功能相关的反应、异柠檬酸脱氢酶反应、补料反应和 Entner-Doudoroff 途径。同时,eno 表达似乎影响整体代谢活性,eno 表达扰动对代谢通量变化的影响较小。使用这里报道的基因表达控制系统,预计我们可以分析复杂生物网络对基因表达扰动的响应和适应过程。