Soria Sandra, Carreón-Rodríguez Ofelia E, de Anda Ramón, Flores Noemí, Escalante Adelfo, Bolívar Francisco
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico.
Laboratorio de Soluciones Biotecnológicas (LasoBiotc), Montevideo 11800, Uruguay.
BioTech (Basel). 2024 Apr 10;13(2):10. doi: 10.3390/biotech13020010.
The intracellular [ATP]/[ADP] ratio is crucial for 's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F-ATPase genes in increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS mutant of by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of PB12 (PTS) was achieved by the expression of the operon encoding the soluble portion of ATP synthase F-ATPase (strain PB12AGD). The analysis of the physiological and metabolic response of the PTS strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.
细胞内的[ATP]/[ADP]比值对于细胞功能至关重要,影响着运输、磷酸化、信号传导和应激反应。在[具体生物名称未给出]中过表达F-ATPase基因会增加葡萄糖消耗、降低能量水平,并触发中心碳代谢基因,特别是糖酵解基因的转录反应,增强碳通量。在本论文中,我们报告了通过使ATP合酶F亚基的细胞质活性解偶联来改变[ATP]/[ADP]比值,从而对[具体生物名称未给出]的PTS突变体的能量水平扰动所产生的影响。在进化菌株[具体生物名称未给出]PB12(PTS)中,通过表达编码ATP合酶F-ATPase可溶性部分的[具体基因名称未给出]操纵子(菌株PB12AGD)实现了[ATP]/[ADP]比值的破坏。使用涉及葡萄糖和乙酸盐运输、糖酵解和糖异生、磷酸戊糖途径(PPP)、三羧酸循环和乙醛酸循环、几种回补途径、呼吸链以及发酵途径的基因、sigma因子和全局调节因子的96个基因的RT-qPCR,确定了PTS菌株对ATP破坏的生理和代谢反应。尽管由于能量水平降低导致葡萄糖运输增加,但[具体生物名称未给出]突变体的生长仍有所降低。它在葡萄糖诱导的能量饥饿下增强了应激反应能力,这表明糖酵解产生的碳通量伴随着向磷酸戊糖途径和恩特纳-杜德洛夫途径的分布。随着[ATP]/[ADP]比值的降低,乙酸盐运输、产生和利用增加。几个编码三羧酸循环和乙醛酸循环的基因以及几个呼吸基因的上调表明呼吸能力增强,这可能与三羧酸循环中电子供体化合物的可用性增加有关,因为该突变体比PB12的呼吸能力增加了240%。与PB12相比,[具体生物名称未给出]突变体细胞内cAMP浓度的降低导致上调基因数量减少,这表明尽管该突变体的能量水平受到严重破坏,但其仍然是一个稳定的遗传背景。