Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.
PLoS One. 2012;7(6):e39382. doi: 10.1371/journal.pone.0039382. Epub 2012 Jun 19.
Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human.
谷氨酸诱导的细胞毒性部分是由增强的氧化应激介导的。本研究的目的是确定谷氨酸对线粒体膜电位、耗氧量、线粒体动力学和自噬调节因子的影响,并探讨硒对鼠神经元 HT22 细胞谷氨酸细胞毒性的保护作用。我们的结果表明,谷氨酸呈剂量依赖性诱导细胞死亡,100 nM 亚硒酸钠的补充可防止谷氨酸对细胞存活的有害影响。谷氨酸诱导的细胞毒性与线粒体超极化、ROS 产生增加和耗氧量增加有关。硒逆转了这些改变。此外,谷氨酸增加了线粒体分裂蛋白标志物 pDrp1 和 Fis1 的水平,并导致线粒体碎片化增加。硒纠正了谷氨酸引起的线粒体动力学失衡,减少了具有碎片化线粒体的细胞数量。最后,谷氨酸激活自噬标志物 Beclin 1 和 LC3-II,而硒则阻止了其激活。这些结果表明,谷氨酸靶向线粒体,生理浓度范围内的硒补充能够防止谷氨酸对线粒体的有害影响。因此,充足的硒补充可能是预防有害谷氨酸毒性的有效策略,需要进一步的研究来确定硒在动物疾病模型和人类中的治疗潜力。