Suppr超能文献

正定矩阵的内在回归模型及其在扩散张量成像中的应用

Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging.

作者信息

Zhu Hongtu, Chen Yasheng, Ibrahim Joseph G, Li Yimei, Hall Colin, Lin Weili

机构信息

H. Zhu is Associate Professor of Biostatistics (

出版信息

J Am Stat Assoc. 2009;104(487):1203-1212. doi: 10.1198/jasa.2009.tm08096.

Abstract

The aim of this paper is to develop an intrinsic regression model for the analysis of positive-definite matrices as responses in a Riemannian manifold and their association with a set of covariates, such as age and gender, in a Euclidean space. The primary motivation and application of the proposed methodology is in medical imaging. Because the set of positive-definite matrices do not form a vector space, directly applying classical multivariate regression may be inadequate in establishing the relationship between positive-definite matrices and covariates of interest, such as age and gender, in real applications. Our intrinsic regression model, which is a semiparametric model, uses a link function to map from the Euclidean space of covariates to the Riemannian manifold of positive-definite matrices. We develop an estimation procedure to calculate parameter estimates and establish their limiting distributions. We develop score statistics to test linear hypotheses on unknown parameters and develop a test procedure based on a resampling method to simultaneously assess the statistical significance of linear hypotheses across a large region of interest. Simulation studies are used to demonstrate the methodology and examine the finite sample performance of the test procedure for controlling the family-wise error rate. We apply our methods to the detection of statistical significance of diagnostic effects on the integrity of white matter in a diffusion tensor study of human immunodeficiency virus. Supplemental materials for this article are available online.

摘要

本文旨在开发一种内在回归模型,用于分析黎曼流形中作为响应的正定矩阵及其与欧几里得空间中一组协变量(如年龄和性别)的关联。所提出方法的主要动机和应用在于医学成像。由于正定矩阵集不构成向量空间,在实际应用中直接应用经典多元回归可能不足以建立正定矩阵与感兴趣的协变量(如年龄和性别)之间的关系。我们的内在回归模型是一种半参数模型,它使用一个链接函数从协变量的欧几里得空间映射到正定矩阵的黎曼流形。我们开发了一种估计程序来计算参数估计值并确定其极限分布。我们开发了得分统计量来检验关于未知参数的线性假设,并基于重采样方法开发了一种检验程序,以同时评估在大感兴趣区域内线性假设的统计显著性。模拟研究用于演示该方法,并检验控制家族性错误率检验程序的有限样本性能。我们将我们的方法应用于在人类免疫缺陷病毒的扩散张量研究中检测对白质完整性的诊断效应的统计显著性。本文的补充材料可在线获取。

相似文献

2
Intrinsic Regression Models for Manifold-Valued Data.流形值数据的内在回归模型
J Am Stat Assoc. 2009 Jan 1;5762:192-199. doi: 10.1007/978-3-642-04271-3_24.
4
Local Polynomial Regression for Symmetric Positive Definite Matrices.对称正定矩阵的局部多项式回归
J R Stat Soc Series B Stat Methodol. 2012 Sep 1;74(4):697-719. doi: 10.1111/j.1467-9868.2011.01022.x. Epub 2012 Mar 16.
5
Regression Models on Riemannian Symmetric Spaces.黎曼对称空间上的回归模型
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
10
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.基于高斯 RBF 核的黎曼流形上的核方法。
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.

引用本文的文献

7
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging.黎曼非线性混合效应模型:分析神经影像学中的纵向变形
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:5777-5786. doi: 10.1109/CVPR.2017.612. Epub 2017 Nov 9.
8
Regression Models on Riemannian Symmetric Spaces.黎曼对称空间上的回归模型
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
10
Manifold-valued Dirichlet Processes.流形值狄利克雷过程
JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.

本文引用的文献

6
Spatial normalization of diffusion tensor fields.扩散张量场的空间归一化。
Magn Reson Med. 2003 Jul;50(1):175-82. doi: 10.1002/mrm.10489.
10
White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study.
Psychiatry Res. 2001 Feb 28;106(1):15-24. doi: 10.1016/s0925-4927(00)00082-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验