Suppr超能文献

脱酰胺加速了淀粉样蛋白的形成并改变了胰岛淀粉样多肽纤维的结构。

Deamidation accelerates amyloid formation and alters amylin fiber structure.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, United States.

出版信息

J Am Chem Soc. 2012 Aug 1;134(30):12658-67. doi: 10.1021/ja3039486. Epub 2012 Jul 17.

Abstract

Deamidation of asparagine and glutamine is the most common nonenzymatic, post-translational modification. Deamidation can influence the structure, stability, folding, and aggregation of proteins and has been proposed to play a role in amyloid formation. However there are no structural studies of the consequences of deamidation on amyloid fibers, in large part because of the difficulty of studying these materials using conventional methods. Here we examine the effects of deamidation on the kinetics of amyloid formation by amylin, the causative agent of type 2 diabetes. We find that deamidation accelerates amyloid formation and the deamidated material is able to seed amyloid formation by unmodified amylin. Using site-specific isotope labeling and two-dimensional infrared (2D IR) spectroscopy, we show that fibers formed by samples that contain deamidated polypeptide contain reduced amounts of β-sheet. Deamidation leads to disruption of the N-terminal β-sheet between Ala-8 and Ala-13, but β-sheet is still retained near Leu-16. The C-terminal sheet is disrupted near Leu-27. Analysis of potential sites of deamidation together with structural models of amylin fibers reveals that deamidation in the N-terminal β-sheet region may be the cause for the disruption of the fiber structure at both the N- and C-terminal β-sheet. Thus, deamidation is a post-translational modification that creates fibers that have an altered structure but can still act as a template for amylin aggregation. Deamidation is very difficult to detect with standard methods used to follow amyloid formation, but isotope-labeled IR spectroscopy provides a means for monitoring sample degradation and investigating the structural consequences of deamidation.

摘要

脱酰胺作用是最常见的非酶促翻译后修饰之一。脱酰胺作用可以影响蛋白质的结构、稳定性、折叠和聚集,并且已经被提出在淀粉样纤维形成中发挥作用。然而,由于使用传统方法研究这些材料的困难,目前还没有关于脱酰胺作用对淀粉样纤维结构影响的结构研究。在这里,我们研究了脱酰胺作用对胰岛淀粉样多肽(2 型糖尿病的致病物质)形成淀粉样纤维的动力学的影响。我们发现脱酰胺作用加速了淀粉样纤维的形成,并且脱酰胺的物质能够通过未修饰的胰岛淀粉样多肽引发淀粉样纤维的形成。使用定点同位素标记和二维红外(2D IR)光谱,我们表明,含有脱酰胺多肽的样品形成的纤维含有较少量的β-折叠。脱酰胺作用导致 N 端β-折叠区(Ala-8 和 Ala-13 之间)的破坏,但β-折叠在 Leu-16 附近仍然保留。C 端片层在 Leu-27 附近被破坏。脱酰胺作用的潜在位点分析以及胰岛淀粉样纤维的结构模型表明,N 端β-折叠区域的脱酰胺作用可能是纤维结构在 N 端和 C 端β-折叠处均被破坏的原因。因此,脱酰胺作用是一种翻译后修饰,它产生的纤维具有改变的结构,但仍然可以作为胰岛淀粉样多肽聚集的模板。脱酰胺作用很难用标准方法检测到,这些方法通常用于跟踪淀粉样纤维的形成,但同位素标记的红外光谱为监测样品降解和研究脱酰胺作用的结构后果提供了一种手段。

相似文献

引用本文的文献

3
Genesis and regulation of C-terminal cyclic imides from protein damage.蛋白质损伤产生的C端环状酰亚胺的起源与调控
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415976121. doi: 10.1073/pnas.2415976121. Epub 2024 Dec 30.
4
Stability of Protein Pharmaceuticals: Recent Advances.蛋白质类药物的稳定性:最新进展
Pharm Res. 2024 Jul;41(7):1301-1367. doi: 10.1007/s11095-024-03726-x. Epub 2024 Jun 27.
6
Biomolecular infrared spectroscopy: making time for dynamics.生物分子红外光谱学:为动力学争取时间。
Chem Sci. 2023 Nov 28;15(2):414-430. doi: 10.1039/d3sc05223k. eCollection 2024 Jan 3.
10
Transparent window 2D IR spectroscopy of proteins.蛋白质的透明窗口 2D-IR 光谱学。
J Chem Phys. 2021 Jul 28;155(4):040903. doi: 10.1063/5.0052628.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验