Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
Biochemistry. 2012 Jul 17;51(28):5557-63. doi: 10.1021/bi300579p. Epub 2012 Jul 2.
The highly conserved protein, IscU, serves as the scaffold for iron-sulfur cluster (ISC) assembly in the ISC system common to bacteria and eukaryotic mitochondria. The apo-form of IscU from Escherichia coli has been shown to populate two slowly interconverting conformational states: one structured (S) and one dynamically disordered (D). Furthermore, single-site amino acid substitutions have been shown to shift the equilibrium between the metamorphic states. Here, we report three-dimensional structural models derived from NMR spectroscopy for the S-state of wild-type (WT) apo-IscU, determined under conditions where the protein was 80% in the S-state and 20% in the D-state, and for the S-state of apo-IscU(D39A), determined under conditions where the protein was ~95% in the S-state. We have used these structures in interpreting the effects of single site amino acid substitutions that alter %S = (100 × [S])/([S] + [D]). These include different residues at the same site, %S: D39V > D39L > D39A > D39G ≈ WT, and alanine substitutions at different sites, %S: N90A > S107A ≈ E111A > WT. Hydrophobic residues at residue 39 appear to stabilize the S-state by decreasing the flexibility of the loops that contain the conserved cysteine residues. The alanine substitutions at positions 90, 107, and 111, on the other hand, stabilize the protein without affecting the loop dynamics. In general, the stability of the S-state correlates with the compactness and thermal stability of the variant.
高度保守的蛋白质 IscU 作为细菌和真核线粒体中 ISC 系统中铁硫簇(ISC)组装的支架。已证明大肠杆菌 apo-IscU 的无配体形式存在两种缓慢相互转化的构象状态:一种结构态(S)和一种动态无序态(D)。此外,单个氨基酸取代已被证明可以改变变构态之间的平衡。在这里,我们报告了通过 NMR 光谱学为野生型(WT)apo-IscU 的 S 态和 apo-IscU(D39A)的 S 态确定的三维结构模型,在这些条件下,蛋白质分别有 80%处于 S 态和 20%处于 D 态,以及 95%处于 S 态。我们使用这些结构来解释改变 %S =(100×[S])/([S]+[D])的单个氨基酸取代的影响。这些取代包括同一位置的不同残基,%S:D39V>D39L>D39A>D39G≈WT,以及不同位置的丙氨酸取代,%S:N90A>S107A≈E111A>WT。残基 39 处的疏水性残基似乎通过降低包含保守半胱氨酸残基的环的灵活性来稳定 S 态。另一方面,位置 90、107 和 111 的丙氨酸取代稳定了蛋白质,而不影响环的动力学。一般来说,S 态的稳定性与变体的紧凑性和热稳定性相关。