Suppr超能文献

基于 L6 细胞的传感器系统,用于水生环境中广谱连续污染物监测。

Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

机构信息

Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilian-University Munich, Munich, Germany.

出版信息

Sensors (Basel). 2012;12(3):3370-93. doi: 10.3390/s120303370. Epub 2012 Mar 8.

Abstract

Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

摘要

饮用水源污染是全球环境保护中一个不断出现的问题。迫切需要新型的实时水质监测技术,能够检测到意想不到的有毒和生物活性物质。本研究展示了使用选定的真核细胞系的基于细胞的传感器系统检测水污染物的适用性。细胞的读出参数是细胞的酸化(代谢)、耗氧量(呼吸)和阻抗(形态)。用 L6 细胞(大鼠成肌细胞)的单层测试了各种潜在的细胞毒性物质类别(重金属、药物、神经毒素、废水)。无机离子(Ni(2+)和 Cu(2+))引起的细胞毒性或细胞效应可以用代谢参数酸化和呼吸检测到低至 0.5mg/L,而其他物质如尼古丁和对乙酰氨基酚的检测限则相当高,在 0.1mg/L 和 100mg/L 范围内。在接近应用模型的真实废水样本中显示出可检测的信号,表明存在细胞毒性物质。结果支持从单一物质检测到整体毒性监测的范式转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0be1/3376625/e42bf1564483/sensors-12-03370f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验