Suppr超能文献

基于 fMRI 功能连接数据的自动睡眠分期。

Automatic sleep staging using fMRI functional connectivity data.

机构信息

Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germ.

出版信息

Neuroimage. 2012 Oct 15;63(1):63-72. doi: 10.1016/j.neuroimage.2012.06.036. Epub 2012 Jun 26.

Abstract

Recent EEG-fMRI studies have shown that different stages of sleep are associated with changes in both brain activity and functional connectivity. These results raise the concern that lack of vigilance measures in resting state experiments may introduce confounds and contamination due to subjects falling asleep inside the scanner. In this study we present a method to perform automatic sleep staging using only fMRI functional connectivity data, thus providing vigilance information while circumventing the technical demands of simultaneous recording of EEG, the gold standard for sleep scoring. The features to classify are the linear correlation values between 20 cortical regions identified using independent component analysis and two regions in the bilateral thalamus. The method is based on the construction of binary support vector machine classifiers discriminating between all pairs of sleep stages and the subsequent combination of them into multiclass classifiers. Different multiclass schemes and kernels are explored. After parameter optimization through 5-fold cross validation we achieve accuracies over 0.8 in the binary problem with functional connectivities obtained for epochs as short as 60s. The multiclass classifier generalizes well to two independent datasets (accuracies over 0.8 in both sets) and can be efficiently applied to any dataset using a sliding window procedure. Modeling vigilance states in resting state analysis will avoid confounded inferences and facilitate the study of vigilance states themselves. We thus consider the method introduced in this study a novel and practical contribution for monitoring vigilance levels inside an MRI scanner without the need of extra recordings other than fMRI BOLD signals.

摘要

最近的 EEG-fMRI 研究表明,睡眠的不同阶段与大脑活动和功能连接的变化都有关联。这些结果引发了人们的担忧,即在静息状态实验中缺乏警觉性测量可能会由于受试者在扫描仪内入睡而引入混淆和污染。在这项研究中,我们提出了一种仅使用 fMRI 功能连接数据进行自动睡眠分期的方法,从而提供了警觉性信息,同时避免了同时记录 EEG 的技术要求,EEG 是睡眠评分的金标准。要分类的特征是使用独立成分分析识别的 20 个皮质区域与双侧丘脑的两个区域之间的线性相关值。该方法基于构建二进制支持向量机分类器,以区分所有睡眠阶段对,并将它们组合成多类分类器。探索了不同的多类方案和核函数。通过 5 折交叉验证进行参数优化后,我们在二进制问题中实现了超过 0.8 的准确率,而用于 epoch 的功能连接短至 60s。多类分类器很好地推广到两个独立数据集(两个数据集的准确率均超过 0.8),并且可以通过滑动窗口程序有效地应用于任何数据集。在静息状态分析中对警觉状态进行建模将避免混淆的推断,并有助于研究警觉状态本身。因此,我们认为本研究中引入的方法是一种新颖而实用的方法,可在无需额外记录 fMRI BOLD 信号以外的其他信号的情况下,在 MRI 扫描仪内监测警觉水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验