Suppr超能文献

失眠症潜在的连接组学紊乱及治疗反应的预测因素。

Connectomic disturbances underlying insomnia disorder and predictors of treatment response.

作者信息

Lu Qian, Zhang Wentong, Yan Hailang, Mansouri Negar, Tanglay Onur, Osipowicz Karol, Joyce Angus W, Young Isabella M, Zhang Xia, Doyen Stephane, Sughrue Michael E, He Chuan

机构信息

Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China.

Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China.

出版信息

Front Hum Neurosci. 2022 Aug 10;16:960350. doi: 10.3389/fnhum.2022.960350. eCollection 2022.

Abstract

OBJECTIVE

Despite its prevalence, insomnia disorder (ID) remains poorly understood. In this study, we used machine learning to analyze the functional connectivity (FC) disturbances underlying ID, and identify potential predictors of treatment response through recurrent transcranial magnetic stimulation (rTMS) and pharmacotherapy.

MATERIALS AND METHODS

51 adult patients with chronic insomnia and 42 healthy age and education matched controls underwent baseline anatomical T1 magnetic resonance imaging (MRI), resting-stage functional MRI (rsfMRI), and diffusion weighted imaging (DWI). Imaging was repeated for 24 ID patients following four weeks of treatment with pharmacotherapy, with or without rTMS. A recently developed machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into ID and control groups based on their FC, and derive network and parcel-based FC features contributing to each model. The number of FC anomalies within each network was also compared between responders and non-responders using median absolute deviation at baseline and follow-up.

RESULTS

Subjects were classified into ID and control with an area under the receiver operating characteristic curve (AUC-ROC) of 0.828. Baseline FC anomaly counts were higher in responders than non-responders. Response as measured by the Insomnia Severity Index (ISI) was associated with a decrease in anomaly counts across all networks, while all networks showed an increase in anomaly counts when response was measured using the Pittsburgh Sleep Quality Index. Overall, responders also showed greater change in all networks, with the Default Mode Network demonstrating the greatest change.

CONCLUSION

Machine learning analysis into the functional connectome in ID may provide useful insight into diagnostic and therapeutic targets.

摘要

目的

尽管失眠症(ID)普遍存在,但人们对其仍知之甚少。在本研究中,我们使用机器学习来分析ID潜在的功能连接(FC)紊乱,并通过重复经颅磁刺激(rTMS)和药物疗法确定治疗反应的潜在预测指标。

材料与方法

51名成年慢性失眠患者和42名年龄及受教育程度相匹配的健康对照者接受了基线解剖T1磁共振成像(MRI)、静息态功能MRI(rsfMRI)和扩散加权成像(DWI)。24名ID患者在接受药物治疗(有或无rTMS)四周后重复进行成像。一种最近开发的机器学习技术,空心树超级(HoTS),被用于根据FC将受试者分为ID组和对照组,并得出有助于每个模型的基于网络和脑区的FC特征。在基线和随访时,还使用中位数绝对偏差比较了反应者和无反应者每个网络内FC异常的数量。

结果

受试者被分为ID组和对照组,受试者工作特征曲线下面积(AUC-ROC)为0.828。反应者的基线FC异常计数高于无反应者。通过失眠严重程度指数(ISI)测量的反应与所有网络中异常计数的减少相关,而当使用匹兹堡睡眠质量指数测量反应时,所有网络的异常计数均增加。总体而言,反应者在所有网络中也表现出更大的变化,默认模式网络的变化最大。

结论

对ID功能连接组进行机器学习分析可能为诊断和治疗靶点提供有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58fd/9399490/334b61f17ff6/fnhum-16-960350-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验