Suppr超能文献

关于人 2,4-二烯酰辅酶 A 还原酶的研究为过氧化物酶体不饱和脂肪酸β-氧化提供了新的认识。

Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids.

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

J Biol Chem. 2012 Aug 17;287(34):28956-65. doi: 10.1074/jbc.M112.385351. Epub 2012 Jun 28.

Abstract

Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the K(m) values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

摘要

过氧化物酶体在维持脂肪酸动态平衡中起着至关重要的作用。尽管线粒体也参与脂肪酸的分解代谢,即β-氧化,但过氧化物酶体和线粒体的β-氧化之间存在差异。只有过氧化物酶体,而不是线粒体,可以缩短超长链脂肪酸。在这里,我们描述了过氧化物酶体 2,4-二烯酰辅酶 A 还原酶(pDCR)与己二烯酰辅酶 A 和 NADP 的三元复合物的晶体结构,作为与线粒体 2,4-二烯酰辅酶 A 还原酶(mDCR)比较的原型,以阐明这两种细胞器中酶之间的差异分子水平。出乎意料的是,pDCR 结构的分辨率达到 1.84 Å,揭示了在 mDCR 活性位点中未见的酪氨酸-丝氨酸对,该对与赖氨酸和天冬酰胺一起被认为是 SDR 酶家族的标志。相反,天冬氨酸通过水分子与 Cα 羟基形成氢键,似乎扰乱了用于底物质子化的水分子。我们的研究为水在 DCR 催化反应中的参与提供了第一个结构证据。生化研究和结构分析表明,pDCR 可以在体外催化六碳长底物的缩短。然而,pDCR 对短链酰基辅酶 A 的 K(m)值至少比具有 10 个或更多脂肪族碳原子的底物高 6 倍。与 mDCR 不同,铰链运动允许 pDCR 处理超长链多不饱和脂肪酸。

相似文献

1
Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids.
J Biol Chem. 2012 Aug 17;287(34):28956-65. doi: 10.1074/jbc.M112.385351. Epub 2012 Jun 28.
3
Peroxisomal degradation of trans-unsaturated fatty acids in the yeast Saccharomyces cerevisiae.
J Biol Chem. 2001 Jan 12;276(2):895-903. doi: 10.1074/jbc.M003305200.
5
Peroxisomes and beta-oxidation of long-chain unsaturated carboxylic acids.
Scand J Clin Lab Invest Suppl. 1991;204:33-46. doi: 10.3109/00365519109104593.
6
The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase.
J Biol Chem. 1999 Sep 3;274(36):25814-20. doi: 10.1074/jbc.274.36.25814.

引用本文的文献

2
Deep phenotyping of patients with MASLD upon high-intensity interval training.
JHEP Rep. 2024 Dec 16;7(3):101289. doi: 10.1016/j.jhepr.2024.101289. eCollection 2025 Mar.
3
Acetylation of proximal cysteine-lysine pairs by alcohol metabolism.
Redox Biol. 2025 Feb;79:103462. doi: 10.1016/j.redox.2024.103462. Epub 2024 Dec 12.
4
Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins.
Science. 2024 Aug 9;385(6709):671-678. doi: 10.1126/science.ado3290. Epub 2024 Aug 8.
5
Giant polyketide synthase enzymes biosynthesize a giant marine polyether biotoxin.
bioRxiv. 2024 Jan 31:2024.01.29.577497. doi: 10.1101/2024.01.29.577497.
6
Peroxisomal β-oxidation enzyme, DECR2, regulates lipid metabolism and promotes treatment resistance in advanced prostate cancer.
Br J Cancer. 2024 Mar;130(5):741-754. doi: 10.1038/s41416-023-02557-8. Epub 2024 Jan 12.
7
Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes.
Front Plant Sci. 2023 Jun 9;14:1180647. doi: 10.3389/fpls.2023.1180647. eCollection 2023.
8
A set of gene knockouts as a resource for global lipidomic changes.
Sci Rep. 2022 Jun 22;12(1):10533. doi: 10.1038/s41598-022-14690-0.
9
Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica.
PLoS One. 2021 Jun 11;16(6):e0252647. doi: 10.1371/journal.pone.0252647. eCollection 2021.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Synthesis and characterization of cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA.
Anal Biochem. 2010 Jun 1;401(1):114-24. doi: 10.1016/j.ab.2010.02.026. Epub 2010 Feb 23.
3
Peroxisomes and peroxisomal disorders: the main facts.
Exp Toxicol Pathol. 2010 Nov;62(6):615-25. doi: 10.1016/j.etp.2009.08.008. Epub 2009 Sep 9.
6
Model preparation in MOLREP and examples of model improvement using X-ray data.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):33-9. doi: 10.1107/S0907444907049839. Epub 2007 Dec 5.
7
HingeProt: automated prediction of hinges in protein structures.
Proteins. 2008 Mar;70(4):1219-27. doi: 10.1002/prot.21613.
8
Biochemistry of mammalian peroxisomes revisited.
Annu Rev Biochem. 2006;75:295-332. doi: 10.1146/annurev.biochem.74.082803.133329.
10
ProFunc: a server for predicting protein function from 3D structure.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W89-93. doi: 10.1093/nar/gki414.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验