Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA.
J Neurosci. 2012 Jun 27;32(26):8800-16. doi: 10.1523/JNEUROSCI.1155-12.2012.
Direction selectivity is a fundamental physiological property that arises from primary visual cortex (V1) circuitry, yet basic questions of how direction-selective (DS) receptive fields are constructed remain unanswered. We built a set of simple, plausible neuronal circuits that produce DS cells via different mechanisms and tested these circuits to determine how they can be distinguished experimentally. Our models consisted of populations of spiking units representing physiological cell classes ranging from LGN cells to V1 complex DS cells. They differed in network architecture and DS mechanism, including linear summation of non-DS simple-cell inputs or nonlinear pairwise combinations of non-DS inputs. The circuits also varied in the location of the DS time delay and whether the DS interaction was facilitatory or suppressive. We tested the models with visual stimuli often used experimentally, including sinusoidal gratings and flashed bars, and computed shuffle-corrected cross-correlograms (CCGs) of spike trains from pairs of units that would be accessible to extracellular recording. We found that CCGs revealed fundamental features of the DS models, including the location of signal delays in the DS circuit and the sign (facilitatory or suppressive) of DS interactions. We also found that correlation was strongly stimulus-dependent, changing with direction and temporal frequency in a manner that generalized across model architectures. Our models make specific predictions for designing, optimizing, and interpreting electrophysiology experiments aimed at resolving DS circuitry and provide new insights into mechanisms that could underlie stimulus-dependent correlation. The models are available and easy to explore at www.imodel.org.
方向选择性是一种基本的生理特性,源于初级视觉皮层 (V1) 电路,但关于如何构建方向选择性 (DS) 感受野的基本问题仍未得到解答。我们构建了一组简单而合理的神经元电路,通过不同的机制产生 DS 细胞,并对这些电路进行了测试,以确定如何在实验中对其进行区分。我们的模型由代表从外侧膝状体细胞到 V1 复杂 DS 细胞等生理细胞类型的脉冲单元组成。它们在网络结构和 DS 机制上有所不同,包括非 DS 简单细胞输入的线性求和或非 DS 输入的非线性成对组合。这些电路还在 DS 时间延迟的位置以及 DS 相互作用是促进还是抑制方面有所不同。我们使用实验中常用的视觉刺激物对模型进行了测试,包括正弦光栅和闪烁条,并计算了可用于细胞外记录的一对单元的脉冲序列的 shuffle-corrected 互相关图 (CCG)。我们发现 CCG 揭示了 DS 模型的基本特征,包括 DS 电路中信号延迟的位置以及 DS 相互作用的符号(促进或抑制)。我们还发现相关性强烈依赖于刺激,其方向和时间频率的变化方式在不同的模型结构中具有通用性。我们的模型为设计、优化和解释旨在解决 DS 电路的电生理实验提供了具体的预测,并为潜在的刺激相关相关性的机制提供了新的见解。这些模型可在 www.imodel.org 上获得,并且易于探索。