Suppr超能文献

神经元间相关性区分了皮质回路模型中方向选择性的机制。

Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models.

机构信息

Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Neurosci. 2012 Jun 27;32(26):8800-16. doi: 10.1523/JNEUROSCI.1155-12.2012.

Abstract

Direction selectivity is a fundamental physiological property that arises from primary visual cortex (V1) circuitry, yet basic questions of how direction-selective (DS) receptive fields are constructed remain unanswered. We built a set of simple, plausible neuronal circuits that produce DS cells via different mechanisms and tested these circuits to determine how they can be distinguished experimentally. Our models consisted of populations of spiking units representing physiological cell classes ranging from LGN cells to V1 complex DS cells. They differed in network architecture and DS mechanism, including linear summation of non-DS simple-cell inputs or nonlinear pairwise combinations of non-DS inputs. The circuits also varied in the location of the DS time delay and whether the DS interaction was facilitatory or suppressive. We tested the models with visual stimuli often used experimentally, including sinusoidal gratings and flashed bars, and computed shuffle-corrected cross-correlograms (CCGs) of spike trains from pairs of units that would be accessible to extracellular recording. We found that CCGs revealed fundamental features of the DS models, including the location of signal delays in the DS circuit and the sign (facilitatory or suppressive) of DS interactions. We also found that correlation was strongly stimulus-dependent, changing with direction and temporal frequency in a manner that generalized across model architectures. Our models make specific predictions for designing, optimizing, and interpreting electrophysiology experiments aimed at resolving DS circuitry and provide new insights into mechanisms that could underlie stimulus-dependent correlation. The models are available and easy to explore at www.imodel.org.

摘要

方向选择性是一种基本的生理特性,源于初级视觉皮层 (V1) 电路,但关于如何构建方向选择性 (DS) 感受野的基本问题仍未得到解答。我们构建了一组简单而合理的神经元电路,通过不同的机制产生 DS 细胞,并对这些电路进行了测试,以确定如何在实验中对其进行区分。我们的模型由代表从外侧膝状体细胞到 V1 复杂 DS 细胞等生理细胞类型的脉冲单元组成。它们在网络结构和 DS 机制上有所不同,包括非 DS 简单细胞输入的线性求和或非 DS 输入的非线性成对组合。这些电路还在 DS 时间延迟的位置以及 DS 相互作用是促进还是抑制方面有所不同。我们使用实验中常用的视觉刺激物对模型进行了测试,包括正弦光栅和闪烁条,并计算了可用于细胞外记录的一对单元的脉冲序列的 shuffle-corrected 互相关图 (CCG)。我们发现 CCG 揭示了 DS 模型的基本特征,包括 DS 电路中信号延迟的位置以及 DS 相互作用的符号(促进或抑制)。我们还发现相关性强烈依赖于刺激,其方向和时间频率的变化方式在不同的模型结构中具有通用性。我们的模型为设计、优化和解释旨在解决 DS 电路的电生理实验提供了具体的预测,并为潜在的刺激相关相关性的机制提供了新的见解。这些模型可在 www.imodel.org 上获得,并且易于探索。

相似文献

5
The derivation of direction selectivity in the striate cortex.纹状皮层中方向选择性的推导。
J Neurosci. 2004 Apr 7;24(14):3583-91. doi: 10.1523/JNEUROSCI.5398-03.2004.
8
The role of V1 surround suppression in MT motion integration.V1 周边抑制在 MT 运动整合中的作用。
J Neurophysiol. 2010 Jun;103(6):3123-38. doi: 10.1152/jn.00654.2009. Epub 2010 Mar 24.

引用本文的文献

4
A theory of direction selectivity for macaque primary visual cortex.猴初级视皮层方向选择性的理论。
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2105062118.
5
Frequency-separated principal component analysis of cortical population activity.皮层群体活动的频分主成分分析。
J Neurophysiol. 2020 Sep 1;124(3):668-681. doi: 10.1152/jn.00167.2020. Epub 2020 Jul 29.
6
A Model of Binocular Motion Integration in MT Neurons.MT神经元中双眼运动整合模型
J Neurosci. 2016 Jun 15;36(24):6563-82. doi: 10.1523/JNEUROSCI.3213-15.2016.
7
Correlations and Neuronal Population Information.相关性与神经元群体信息。
Annu Rev Neurosci. 2016 Jul 8;39:237-56. doi: 10.1146/annurev-neuro-070815-013851. Epub 2016 Apr 21.
9
A single functional model of drivers and modulators in cortex.皮层中驱动因素和调节因素的单一功能模型。
J Comput Neurosci. 2014 Feb;36(1):97-118. doi: 10.1007/s10827-013-0471-7. Epub 2013 Jul 2.
10

本文引用的文献

2
Dendritic discrimination of temporal input sequences in cortical neurons.皮质神经元对时间输入序列的树突分辨。
Science. 2010 Sep 24;329(5999):1671-5. doi: 10.1126/science.1189664. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验