Suppr超能文献

从哨点监测信息推断全国 COVID 住院率:贝叶斯建模方法。

Extrapolating Sentinel Surveillance Information to Estimate National COVID Hospital Admission Rates: A Bayesian Modeling Approach.

机构信息

Eagle Global Scientific, LLC, Atlanta, Georgia, USA.

CDC, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia, USA.

出版信息

Influenza Other Respir Viruses. 2024 Oct;18(10):e70026. doi: 10.1111/irv.70026.

Abstract

The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was established in March 2020 to monitor trends in hospitalizations associated with SARS-CoV-2 infection. COVID-NET is a geographically diverse population-based surveillance system for laboratory-confirmed COVID-19-associated hospitalizations with a combined catchment area covering approximately 10% of the US population. Data collected in COVID-NET includes monthly counts of hospitalizations for persons with confirmed SARS-CoV-2 infection who reside within the defined catchment area. A Bayesian modeling approach is proposed to estimate US national COVID-associated hospital admission rates based on information reported in the COVID-NET system. A key component of the approach is the ability to estimate uncertainty resulting from extrapolation of hospitalization rates observed within COVID-NET to the US population. In addition, the proposed model enables estimation of other contributors to uncertainty including temporal dependence among reported COVID-NET admission counts, the impact of unmeasured site-specific factors, and the frequency and accuracy of testing for SARS-CoV-2 infection. Based on the proposed model, an estimated 6.3 million (95% uncertainty interval (UI) 5.4-7.3 million) COVID-19-associated hospital admissions occurred in the United States from September 2020 through December 2023. Between April 2020 and December 2023, model-based monthly admission rate estimates ranged from a minimum of 1 per 10,000 population (95% UI 0.7-1.2) in June of 2023 to a highest monthly level of 16 per 10,000 (95% UI 13-19) in January 2022.

摘要

COVID-19 相关住院监测网络(COVID-NET)于 2020 年 3 月成立,旨在监测与 SARS-CoV-2 感染相关的住院趋势。COVID-NET 是一个具有地理多样性的基于人群的监测系统,用于监测实验室确诊的 COVID-19 相关住院病例,其综合监测区域覆盖了美国约 10%的人口。COVID-NET 收集的数据包括每月在规定监测区域内居住的确诊 SARS-CoV-2 感染患者的住院人数。提出了一种贝叶斯建模方法,用于根据 COVID-NET 系统报告的信息估计美国全国 COVID 相关住院入院率。该方法的一个关键组成部分是能够估计从 COVID-NET 中观察到的住院率外推到美国人口时产生的不确定性。此外,所提出的模型还能够估计其他不确定性来源,包括报告的 COVID-NET 入院人数之间的时间依赖性、未测量的特定地点因素的影响以及 SARS-CoV-2 感染检测的频率和准确性。基于所提出的模型,估计 2020 年 9 月至 2023 年 12 月期间,美国有 630 万(95%置信区间(UI)为 540 万至 730 万)例 COVID-19 相关住院病例。在 2020 年 4 月至 2023 年 12 月期间,基于模型的每月入院率估计值从 2023 年 6 月的最低每 10000 人 1 例(95%UI 为 0.7-1.2)到 2022 年 1 月的最高每月 16 例(95%UI 为 13-19)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786a/11497105/6bd6c98b0d36/IRV-18-e70026-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验