Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
J Biol Chem. 2012 Aug 17;287(34):28966-74. doi: 10.1074/jbc.M112.345629. Epub 2012 Jun 29.
Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.
G 蛋白信号调节蛋白(RGS)是异三聚体 G 蛋白信号的有效抑制剂。RGS4 在几种组织中减弱 G 蛋白的活性。先前的工作表明,RGS4 氨基末端(Cys-2 和 Cys-12)和核心结构域(Cys-95)上的半胱氨酸棕榈酰化对于蛋白质稳定性、质膜靶向和 GTPase 激活功能很重要。迄今为止,基于其在稳定 RGS4 蛋白中的潜在作用,Cys-2 一直是 RGS4 调节的优先靶标。在这里,我们研究了 Cys-2 和 Cys-12 对 RGS4 细胞内定位和功能的贡献差异。用 2-溴棕榈酸抑制 RGS4 的棕榈酰化会显著降低其在质膜上的定位。同样,突变 RGS4 的两性螺旋(L23D)会阻止其质膜定位及其 G(q)抑制功能。这些数据表明,RGS4 的棕榈酰化和两性螺旋结构域都需要最佳的质膜靶向和功能。Cys-12 的突变使 RGS4 的膜靶向减少到与 2-溴棕榈酸相似的程度,导致其完全丧失 G(q)抑制功能。Cys-2 的突变不会损害质膜靶向,但会部分损害其作为 G(q)抑制剂的功能。与 TGN38 比较野生型和突变型 RGS4 蛋白的内体分布模式表明,这两个半胱氨酸的棕榈酰化对 RGS4 的细胞内运输有不同的贡献。这些数据首次表明,Cys-2 和 Cys-12 在通过与 RGS4 蛋白稳定无关的机制调节 RGS4 膜定位、细胞内运输和 G(q)抑制功能方面发挥着截然不同的作用。