Suppr超能文献

N-端半胱氨酸残基差异影响 RGS4 蛋白的质膜靶向、细胞内运输和功能。

Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.

机构信息

Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.

出版信息

J Biol Chem. 2012 Aug 17;287(34):28966-74. doi: 10.1074/jbc.M112.345629. Epub 2012 Jun 29.

Abstract

Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.

摘要

G 蛋白信号调节蛋白(RGS)是异三聚体 G 蛋白信号的有效抑制剂。RGS4 在几种组织中减弱 G 蛋白的活性。先前的工作表明,RGS4 氨基末端(Cys-2 和 Cys-12)和核心结构域(Cys-95)上的半胱氨酸棕榈酰化对于蛋白质稳定性、质膜靶向和 GTPase 激活功能很重要。迄今为止,基于其在稳定 RGS4 蛋白中的潜在作用,Cys-2 一直是 RGS4 调节的优先靶标。在这里,我们研究了 Cys-2 和 Cys-12 对 RGS4 细胞内定位和功能的贡献差异。用 2-溴棕榈酸抑制 RGS4 的棕榈酰化会显著降低其在质膜上的定位。同样,突变 RGS4 的两性螺旋(L23D)会阻止其质膜定位及其 G(q)抑制功能。这些数据表明,RGS4 的棕榈酰化和两性螺旋结构域都需要最佳的质膜靶向和功能。Cys-12 的突变使 RGS4 的膜靶向减少到与 2-溴棕榈酸相似的程度,导致其完全丧失 G(q)抑制功能。Cys-2 的突变不会损害质膜靶向,但会部分损害其作为 G(q)抑制剂的功能。与 TGN38 比较野生型和突变型 RGS4 蛋白的内体分布模式表明,这两个半胱氨酸的棕榈酰化对 RGS4 的细胞内运输有不同的贡献。这些数据首次表明,Cys-2 和 Cys-12 在通过与 RGS4 蛋白稳定无关的机制调节 RGS4 膜定位、细胞内运输和 G(q)抑制功能方面发挥着截然不同的作用。

相似文献

4
Rab family proteins regulate the endosomal trafficking and function of RGS4.
J Biol Chem. 2013 Jul 26;288(30):21836-49. doi: 10.1074/jbc.M113.466888. Epub 2013 Jun 3.
6
Plasma membrane localization is required for RGS4 function in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5584-9. doi: 10.1073/pnas.95.10.5584.
9
N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q).
Cell Signal. 2008 Oct;20(10):1900-10. doi: 10.1016/j.cellsig.2008.06.019. Epub 2008 Jul 2.
10
Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling.
Methods Enzymol. 2004;389:89-105. doi: 10.1016/S0076-6879(04)89006-2.

引用本文的文献

1
Endomembrane-Based Signaling by GPCRs and G-Proteins.
Cells. 2022 Feb 3;11(3):528. doi: 10.3390/cells11030528.
3
RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma.
Pharmacol Ther. 2021 Jul;223:107818. doi: 10.1016/j.pharmthera.2021.107818. Epub 2021 Feb 15.
4
RGS4 Maintains Chronic Pain Symptoms in Rodent Models.
J Neurosci. 2019 Oct 16;39(42):8291-8304. doi: 10.1523/JNEUROSCI.3154-18.2019. Epub 2019 Jul 15.
6
The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21.
Br J Pharmacol. 2017 Mar;174(6):427-437. doi: 10.1111/bph.13716. Epub 2017 Feb 8.
7
Gαi3-Dependent Inhibition of JNK Activity on Intracellular Membranes.
Front Bioeng Biotechnol. 2015 Sep 1;3:128. doi: 10.3389/fbioe.2015.00128. eCollection 2015.
8
The dynamic role of regulator of G-protein signalling (RGS) proteins in partial agonism.
J Physiol. 2014 Sep 1;592(17):3701-2. doi: 10.1113/jphysiol.2014.279562.
9
RGS4 regulates partial agonism of the M2 muscarinic receptor-activated K+ currents.
J Physiol. 2014 Mar 15;592(6):1237-48. doi: 10.1113/jphysiol.2013.269803. Epub 2014 Jan 13.
10
Reversible inhibitors of regulators of G-protein signaling identified in a high-throughput cell-based calcium signaling assay.
Cell Signal. 2013 Dec;25(12):2848-55. doi: 10.1016/j.cellsig.2013.09.007. Epub 2013 Sep 14.

本文引用的文献

2
Posttranslational regulation of AMPA receptor trafficking and function.
Curr Opin Neurobiol. 2012 Jun;22(3):470-9. doi: 10.1016/j.conb.2011.09.008. Epub 2011 Oct 14.
3
Protein palmitoylation and subcellular trafficking.
Biochim Biophys Acta. 2011 Dec;1808(12):2981-94. doi: 10.1016/j.bbamem.2011.07.009. Epub 2011 Jul 23.
4
Gi/o signaling and the palmitoyltransferase DHHC2 regulate palmitate cycling and shuttling of RGS7 family-binding protein.
J Biol Chem. 2011 Apr 15;286(15):13695-703. doi: 10.1074/jbc.M110.193763. Epub 2011 Feb 22.
5
DHHC protein-dependent palmitoylation protects regulator of G-protein signaling 4 from proteasome degradation.
FEBS Lett. 2010 Nov 19;584(22):4570-4. doi: 10.1016/j.febslet.2010.10.052. Epub 2010 Oct 28.
6
Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis.
J Cell Biol. 2010 Oct 4;191(1):23-9. doi: 10.1083/jcb.200911143. Epub 2010 Sep 27.
7
RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7999-8004. doi: 10.1073/pnas.1003655107. Epub 2010 Apr 12.
8
Direct observation and quantitative analysis of Lck exchange between plasma membrane and cytosol in living T cells.
J Biol Chem. 2010 Feb 26;285(9):6063-70. doi: 10.1074/jbc.M109.025981. Epub 2009 Dec 29.
9
Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4.
Cancer Res. 2009 Jul 15;69(14):5743-51. doi: 10.1158/0008-5472.CAN-08-3564. Epub 2009 Jun 23.
10
Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures.
Mol Pharmacol. 2009 Jul;76(1):18-24. doi: 10.1124/mol.109.056127. Epub 2009 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验