Suppr超能文献

利用时间关联规则学习和破坏视觉识别中的不变性。

Learning and disrupting invariance in visual recognition with a temporal association rule.

机构信息

Center for Biological and Computational Learning, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge MA, USA.

出版信息

Front Comput Neurosci. 2012 Jun 25;6:37. doi: 10.3389/fncom.2012.00037. eCollection 2012.

Abstract

Learning by temporal association rules such as Foldiak's trace rule is an attractive hypothesis that explains the development of invariance in visual recognition. Consistent with these rules, several recent experiments have shown that invariance can be broken at both the psychophysical and single cell levels. We show (1) that temporal association learning provides appropriate invariance in models of object recognition inspired by the visual cortex, (2) that we can replicate the "invariance disruption" experiments using these models with a temporal association learning rule to develop and maintain invariance, and (3) that despite dramatic single cell effects, a population of cells is very robust to these disruptions. We argue that these models account for the stability of perceptual invariance despite the underlying plasticity of the system, the variability of the visual world and expected noise in the biological mechanisms.

摘要

通过时间关联规则(如 Foldiak 的痕迹规则)进行学习是一种有吸引力的假设,它可以解释视觉识别中不变性的发展。这些规则一致表明,不变性可以在心理物理学和单细胞水平上被打破。我们展示了(1)时间关联学习为受视觉皮层启发的对象识别模型提供了适当的不变性,(2)我们可以使用具有时间关联学习规则的这些模型复制“不变性破坏”实验,以开发和维持不变性,以及(3)尽管单个细胞的影响很大,但细胞群体对这些干扰非常稳健。我们认为,这些模型解释了尽管系统具有潜在的可塑性、视觉世界的可变性以及生物机制中的预期噪声,但知觉不变性仍然很稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12d4/3385587/4e0fa2054869/fncom-06-00037-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验