Suppr超能文献

使用呼吸运动模型减少呼吸相关 CT 图像中的不规则呼吸伪影。

Reduction of irregular breathing artifacts in respiration-correlated CT images using a respiratory motion model.

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Med Phys. 2012 Jun;39(6):3070-9. doi: 10.1118/1.4711802.

Abstract

PURPOSE

Respiration-correlated CT (RCCT) images produced with commonly used phase-based sorting of CT slices often exhibit discontinuity artifacts between CT slices, caused by cycle-to-cycle amplitude variations in respiration. Sorting based on the displacement of the respiratory signal yields slices at more consistent respiratory motion states and hence reduces artifacts, but missing image data (gaps) may occur. The authors report on the application of a respiratory motion model to produce an RCCT image set with reduced artifacts and without missing data.

METHODS

Input data consist of CT slices from a cine CT scan acquired while recording respiration by monitoring abdominal displacement. The model-based generation of RCCT images consists of four processing steps: (1) displacement-based sorting of CT slices to form volume images at 10 motion states over the cycle; (2) selection of a reference image without gaps and deformable registration between the reference image and each of the remaining images; (3) generation of the motion model by applying a principal component analysis to establish a relationship between displacement field and respiration signal at each motion state; (4) application of the motion model to deform the reference image into images at the 9 other motion states. Deformable image registration uses a modified fast free-form algorithm that excludes zero-intensity voxels, caused by missing data, from the image similarity term in the minimization function. In each iteration of the minimization, the displacement field in the gap regions is linearly interpolated from nearest neighbor nonzero intensity slices. Evaluation of the model-based RCCT examines three types of image sets: cine scans of a physical phantom programmed to move according to a patient respiratory signal, NURBS-based cardiac torso (NCAT) software phantom, and patient thoracic scans.

RESULTS

Comparison in physical motion phantom shows that object distortion caused by variable motion amplitude in phase-based sorting is visibly reduced with model-based RCCT. Comparison of model-based RCCT to original NCAT images as ground truth shows best agreement at motion states whose displacement-sorted images have no missing slices, with mean and maximum discrepancies in lung of 1 and 3 mm, respectively. Larger discrepancies correlate with motion states having a larger number of missing slices in the displacement-sorted images. Artifacts in patient images at different motion states are also reduced. Comparison with displacement-sorted patient images as a ground truth shows that the model-based images closely reproduce the ground truth geometry at different motion states.

CONCLUSIONS

Results in phantom and patient images indicate that the proposed method can produce RCCT image sets with reduced artifacts relative to phase-sorted images, without the gaps inherent in displacement-sorted images. The method requires a reference image at one motion state that has no missing data. Highly irregular breathing patterns can affect the method's performance, by introducing artifacts in the reference image (although reduced relative to phase-sorted images), or in decreased accuracy in the image prediction of motion states containing large regions of missing data.

摘要

目的

使用常用的基于相位的 CT 切片排序方法生成的呼吸相关 CT(RCCT)图像在 CT 切片之间常常存在不连续伪影,这是由呼吸周期内的幅度变化引起的。基于呼吸信号的位移进行排序可以获得更一致的呼吸运动状态的切片,从而减少伪影,但可能会出现图像数据丢失(间隙)。作者报告了应用呼吸运动模型生成具有减少伪影和无数据丢失的 RCCT 图像集。

方法

输入数据由电影 CT 扫描的 CT 切片组成,该扫描在通过监测腹部位移记录呼吸时获取。基于模型的 RCCT 图像生成包括四个处理步骤:(1)基于位移的 CT 切片排序,以在周期内形成 10 个运动状态的体积图像;(2)选择无间隙的参考图像,并在参考图像和其余每个图像之间进行可变形配准;(3)通过对每个运动状态的位移场和呼吸信号应用主成分分析,生成运动模型;(4)应用运动模型将参考图像变形为其他 9 个运动状态的图像。可变形图像配准使用修改后的快速自由形态算法,该算法在最小化函数的图像相似性项中排除了由缺失数据引起的零强度体素。在最小化的每个迭代中,在间隙区域中的位移场通过最近邻非零强度切片的线性内插来生成。对基于模型的 RCCT 的评估检查了三种类型的图像集:根据患者呼吸信号编程以移动的物理体模的电影扫描、基于 NURBS 的心脏胸(NCAT)软件体模和患者胸部扫描。

结果

在物理运动体模中的比较表明,与基于相位的排序相比,基于模型的 RCCT 明显减少了由于运动幅度变化引起的物体变形。与原始 NCAT 图像作为基准的基于模型的 RCCT 比较表明,在位移排序图像没有缺失切片的运动状态下,与肺部的平均和最大差异分别为 1mm 和 3mm,具有最佳一致性。较大的差异与位移排序图像中缺失切片数量较多的运动状态相关。不同运动状态下患者图像中的伪影也减少了。与作为基准的位移排序患者图像的比较表明,基于模型的图像在不同的运动状态下可以紧密地再现基准的几何形状。

结论

在体模和患者图像中的结果表明,与相位排序图像相比,所提出的方法可以生成具有减少伪影的 RCCT 图像集,而没有位移排序图像固有的间隙。该方法需要一个没有缺失数据的参考图像在一个运动状态。高度不规则的呼吸模式会通过在参考图像中引入伪影(尽管相对于相位排序图像减少),或者在包含大量缺失数据的运动状态的图像预测中降低准确性,从而影响方法的性能。

相似文献

引用本文的文献

2
Quality assurance of a breathing controlled four-dimensional computed tomography algorithm.呼吸控制四维计算机断层扫描算法的质量保证
Phys Imaging Radiat Oncol. 2022 Jun 24;23:85-91. doi: 10.1016/j.phro.2022.06.007. eCollection 2022 Jul.

本文引用的文献

3
Motion management with phase-adapted 4D-optimization.采用相位自适应 4D 优化的运动管理。
Phys Med Biol. 2010 Sep 7;55(17):5189-202. doi: 10.1088/0031-9155/55/17/019. Epub 2010 Aug 16.
5
4D CT sorting based on patient internal anatomy.基于患者内部解剖结构的4D CT分类
Phys Med Biol. 2009 Aug 7;54(15):4821-33. doi: 10.1088/0031-9155/54/15/012. Epub 2009 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验