Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
J Nucl Med. 2010 Jul;51(7):1147-54. doi: 10.2967/jnumed.109.073999. Epub 2010 Jun 16.
HighlY constrained backPRojection (HYPR) is a promising image-processing strategy with widespread application in time-resolved MRI that is also well suited for PET applications requiring time series data. The HYPR technique involves the creation of a composite image from the entire time series. The individual time frames then provide the basis for weighting matrices of the composite. The signal-to-noise ratio (SNR) of the individual time frames can be dramatically improved using the high SNR of the composite image. In this study, we introduced the modified HYPR algorithm (the HYPR method constraining the backprojections to local regions of interest [HYPR-LR]) for the processing of dynamic PET studies. We demonstrated the performance of HYPR-LR in phantom, small-animal, and human studies using qualitative, semiquantitative, and quantitative comparisons. The results demonstrate that significant improvements in SNR can be realized in the PET time series, particularly for voxel-based analysis, without sacrificing spatial resolution. HYPR-LR processing holds great potential in nuclear medicine imaging for all applications with low SNR in dynamic scans, including for the generation of voxel-based parametric images and visualization of rapid radiotracer uptake and distribution.
高约束反向投影(HYPR)是一种很有前途的图像处理策略,广泛应用于需要时间序列数据的时间分辨 MRI,也非常适合需要时间序列数据的 PET 应用。HYPR 技术涉及从整个时间序列创建复合图像。然后,各个时间帧为复合的加权矩阵提供基础。使用复合图像的高信噪比,可以显著提高各个时间帧的信噪比(SNR)。在这项研究中,我们引入了改进的 HYPR 算法(将反向投影约束到局部感兴趣区域的 HYPR 方法 [HYPR-LR]),用于处理动态 PET 研究。我们使用定性、半定量和定量比较在体模、小动物和人体研究中展示了 HYPR-LR 的性能。结果表明,在不牺牲空间分辨率的情况下,PET 时间序列中的 SNR 可以得到显著提高。HYPR-LR 处理在核医学成像中具有很大的潜力,适用于所有动态扫描中 SNR 较低的应用,包括生成基于体素的参数图像和可视化快速放射性示踪剂摄取和分布。