Suppr超能文献

使用磁共振成像进行密集颅内电极阵列的定位。

Localization of dense intracranial electrode arrays using magnetic resonance imaging.

机构信息

Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY 10016, USA.

Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Neuroimage. 2012 Oct 15;63(1):157-165. doi: 10.1016/j.neuroimage.2012.06.039. Epub 2012 Jun 30.

Abstract

Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm ± 0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature.

摘要

颅内电极阵列常用于药物难治性癫痫患者的术前评估,由于其具有较高的空间和时间分辨率,这些电极的记录在人类认知神经生理学中得到了越来越多的应用。对于研究人员和临床医生来说,将电极位置相对于特定个体的神经解剖结构进行定位至关重要。在许多中心,由于术后 MRI 对手术并发症具有更高的敏感性,并且没有辐射,因此会利用术后 MRI 来检测电极。然而,每个电极周围的磁敏感性伪影会妨碍对单个电极的明确检测,尤其是那些嵌入在密集网格阵列中的电极。在这里,我们提出了一种基于植入前后 MRI 图像的有效方法,该方法结合了阵列几何形状和个体的皮质表面,可准确地定位颅内电极阵列。电极可以直接相对于个体患者皮质表面重建的皮质下回结构进行可视化。该方法的验证结果表明,定位电极位置的空间精度很高(8 名患者的 271 个电极的平均误差为 0.96 毫米±0.81 毫米)。这种方法需要的用户输入很少,处理时间短,并且使用无辐射成像,这为在研究和临床中利用 MRI 对颅内电极阵列进行定量精确定位提供了强有力的激励。与标准脑图谱的配准进一步允许进行个体间的比较,并将颅内 EEG 结果与更广泛的神经影像学文献联系起来。

相似文献

5
Automated electrocorticographic electrode localization on individually rendered brain surfaces.个体绘制脑表面的自动脑电电极定位。
J Neurosci Methods. 2010 Jan 15;185(2):293-8. doi: 10.1016/j.jneumeth.2009.10.005. Epub 2009 Oct 27.
9
Learning nonrigid deformations for constrained multi-modal image registration.学习用于约束多模态图像配准的非刚性变形
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):171-8. doi: 10.1007/978-3-642-40760-4_22.

引用本文的文献

6
A left-lateralized dorsolateral prefrontal network for naming.一个用于命名的左侧化背外侧前额叶网络。
Cell Rep. 2025 May 27;44(5):115677. doi: 10.1016/j.celrep.2025.115677. Epub 2025 May 9.

本文引用的文献

3
Three-dimensional visualization of subdural electrodes for presurgical planning.颅内电极的三维可视化用于术前规划。
Neurosurgery. 2011 Mar;68(1 Suppl Operative):152-60; discussion 160-1. doi: 10.1227/NEU.0b013e31820783ba.
4
Brain surface electrode co-registration using MRI and X-ray.使用磁共振成像(MRI)和X射线进行脑表面电极配准
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6015-8. doi: 10.1109/IEMBS.2010.5627597.
6
Technique for the localization of intracranially implanted electrodes.颅内植入电极的定位技术。
J Neurosurg. 2010 Dec;113(6):1182-5. doi: 10.3171/2009.12.JNS091678. Epub 2010 Jan 29.
7
Automated electrocorticographic electrode localization on individually rendered brain surfaces.个体绘制脑表面的自动脑电电极定位。
J Neurosci Methods. 2010 Jan 15;185(2):293-8. doi: 10.1016/j.jneumeth.2009.10.005. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验