Dalal Sarang S, Edwards Erik, Kirsch Heidi E, Barbaro Nicholas M, Knight Robert T, Nagarajan Srikantan S
Biomagnetic Imaging Laboratory, Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143-0628, USA.
J Neurosci Methods. 2008 Sep 15;174(1):106-15. doi: 10.1016/j.jneumeth.2008.06.028. Epub 2008 Jul 6.
Intracranial electroencephalography (iEEG) is clinically indicated for medically refractory epilepsy and is a promising approach for developing neural prosthetics. These recordings also provide valuable data for cognitive neuroscience research. Accurate localization of iEEG electrodes is essential for evaluating specific brain regions underlying the electrodes that indicate normal or pathological activity, as well as for relating research findings to neuroimaging and lesion studies. However, electrodes are frequently tucked underneath the edge of a craniotomy, inserted via a burr hole, or placed deep within the brain, where their locations cannot be verified visually or with neuronavigational systems. We show that one existing method, registration of postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI), can result in errors exceeding 1cm. We present a novel method for localizing iEEG electrodes using routinely acquired surgical photographs, X-ray radiographs, and magnetic resonance imaging scans. Known control points are used to compute projective transforms that link the different image sets, ultimately allowing hidden electrodes to be localized, in addition to refining the location of manually registered visible electrodes. As the technique does not require any calibration between the different image modalities, it can be applied to existing image databases. The final result is a set of electrode positions on the patient's rendered MRI yielding locations relative to sulcal and gyral landmarks on individual anatomy, as well as MNI coordinates. We demonstrate the results of our method in eight epilepsy patients implanted with electrode grids spanning the left hemisphere.
颅内脑电图(iEEG)在临床上用于难治性癫痫,并且是开发神经假体的一种有前景的方法。这些记录也为认知神经科学研究提供了有价值的数据。准确确定iEEG电极的位置对于评估电极下方指示正常或病理活动的特定脑区至关重要,对于将研究结果与神经影像学和病变研究相关联也很重要。然而,电极常常被塞在开颅手术边缘下方,通过钻孔插入,或放置在脑深部,在这些位置无法通过视觉或神经导航系统来验证其位置。我们表明,一种现有的方法,即植入后计算机断层扫描(CT)与术前磁共振成像(MRI)配准,可能导致超过1厘米的误差。我们提出了一种使用常规获取的手术照片、X线片和磁共振成像扫描来定位iEEG电极的新方法。已知的控制点用于计算将不同图像集联系起来的投影变换,最终除了能优化手动配准的可见电极的位置外,还能定位隐藏电极。由于该技术不需要在不同图像模态之间进行任何校准,所以它可以应用于现有的图像数据库。最终结果是在患者的磁共振成像渲染图上得到一组电极位置,给出相对于个体解剖结构上脑沟和脑回标志的位置,以及蒙特利尔神经研究所(MNI)坐标。我们在八名植入了覆盖左半球电极格栅的癫痫患者中展示了我们方法的结果。