TU Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Str. 6, D-44227 Dortmund, Germany.
Small. 2012 Oct 8;8(19):3000-8. doi: 10.1002/smll.201200703. Epub 2012 Jul 3.
Miniaturization is an important aspect of device fabrication. Despite the advancements of modern top-down approaches, scaling-down to the sub-nanometer size is still a challenge. As an alternative, bottom-up approaches, such as the use of DNA as an engineering material, are therefore emerging, allowing control of matter at the single-molecule level. A DNA-based self-assembly method for the construction of switchable DNA devices is descrbied here based on G-quadruplex moieties, which are patterned on quasi-planar DNA arrays with nanoscale precision. The reversible switching of the devices is triggered by addition of DNA sequences ('fuels') and translated into linear extension/contractile movements. The conformational change of the devices was visualized by atomic force microscopy and FRET spectroscopy. Steady state fluorescence spectroscopy indicated that scaffolding of the G4 motors to either individual tiles or extended superlattices had no significant impact on the switching and optical performance of the system. However, time-resolved spectroscopy revealed that ordering in the microstructural environment enhances the fraction of molecules subject to FRET. Altogether, our study confirms that DNA superstructures are well-suited scaffolds for accommodation of mechanically switchable units and thus opens the door to the development of more sophisticated nanomechanical devices.
微型化是器件制造的一个重要方面。尽管现代自上而下的方法取得了进步,但将尺寸缩小到亚纳米级仍然是一个挑战。作为替代方法,自下而上的方法,如使用 DNA 作为工程材料,因此正在出现,允许在单分子水平上控制物质。本文描述了一种基于 DNA 的自组装方法,用于构建可切换的 DNA 器件,该方法基于 G-四链体部分,这些部分以纳米级精度图案化在准平面 DNA 阵列上。通过添加 DNA 序列(“燃料”)触发器件的可逆切换,并将其转化为线性扩展/收缩运动。通过原子力显微镜和 FRET 光谱学可视化器件的构象变化。稳态荧光光谱表明,将 G4 马达支架固定在单个瓦片或扩展超晶格上,对系统的开关和光学性能没有显著影响。然而,时间分辨光谱表明,微结构环境中的有序性增强了受 FRET 影响的分子分数。总之,我们的研究证实 DNA 超结构是容纳机械可切换单元的理想支架,从而为开发更复杂的纳米机械器件打开了大门。