Suppr超能文献

基于偏光全息术的表面测量的理论和实际精度研究:实现微创手术中的图像配准。

A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery.

机构信息

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Int J Med Robot. 2013 Jun;9(2):190-203. doi: 10.1002/rcs.1446. Epub 2012 Jul 4.

Abstract

BACKGROUND

Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper.

METHODS

We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney.

RESULTS

Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney.

CONCLUSIONS

Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery.

摘要

背景

注册的医学图像可以辅助手术导航,并实现图像引导的治疗传递。在软组织中,通常使用基于表面的配准,并且可以通过激光表面扫描来实现。最近提出的跟踪共焦全息术(提供距离测量)是一种微创获取表面扫描的方法。将这项技术从概念转化为临床应用需要进行严格的准确性评估,这正是本文的目的。

方法

我们采用最近的非均匀各向异性点配准结果,为跟踪距离测量系统的准确性提供理论框架。实验在具有明确定义几何形状的复杂物体、人体肾脏模拟体模和人体肾脏尸体上进行。

结果

实验与模型预测相符,在模拟体模上的点均方根误差始终<1 毫米,基于表面的配准的最近点误差平均值<1 毫米,在人体肾脏尸体上的目标配准误差的均方根值为 0.8 毫米。

结论

跟踪共焦全息术在临床上是可行的;它能够实现微创表面扫描的准确性,与需要开放性手术的当前临床方法相当。

相似文献

2
Minimally invasive holographic surface scanning for soft-tissue image registration.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1497-506. doi: 10.1109/TBME.2010.2040736.
3
Comparison study of intraoperative surface acquisition methods for surgical navigation.
IEEE Trans Biomed Eng. 2013 Apr;60(4):1090-9. doi: 10.1109/TBME.2012.2215033. Epub 2012 Aug 23.
5
Robot-assisted image-guided targeting for minimally invasive neurosurgery: planning, registration, and in-vitro experiment.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):131-8. doi: 10.1007/11566489_17.
6
Technology improvements for image-guided and minimally invasive spine procedures.
IEEE Trans Inf Technol Biomed. 2002 Dec;6(4):249-61. doi: 10.1109/titb.2002.806089.
7
Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.
Comput Med Imaging Graph. 2010 Jan;34(1):46-54. doi: 10.1016/j.compmedimag.2009.07.003. Epub 2009 Aug 11.
9
Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery.
IEEE Trans Med Imaging. 2006 Mar;25(3):312-23. doi: 10.1109/TMI.2005.862736.

引用本文的文献

1
Comparison study of intraoperative surface acquisition methods on registration accuracy for soft-tissue surgical navigation.
J Med Imaging (Bellingham). 2024 Mar;11(2):025001. doi: 10.1117/1.JMI.11.2.025001. Epub 2024 Mar 4.
2
Holography applications toward medical field: An overview.
Indian J Radiol Imaging. 2020 Jul-Sep;30(3):354-361. doi: 10.4103/ijri.IJRI_39_20. Epub 2020 Oct 15.
3
Surface scanning for 3D dose calculation in intraoperative electron radiation therapy.
Radiat Oncol. 2018 Dec 7;13(1):243. doi: 10.1186/s13014-018-1181-0.
4
Image registration assessment in radiotherapy image guidance based on control chart monitoring.
J Med Imaging (Bellingham). 2018 Apr;5(2):021221. doi: 10.1117/1.JMI.5.2.021221. Epub 2018 Mar 14.
5
Intraoral Scanner Technologies: A Review to Make a Successful Impression.
J Healthc Eng. 2017;2017:8427595. doi: 10.1155/2017/8427595. Epub 2017 Sep 5.
7
A novel method for texture-mapping conoscopic surfaces for minimally invasive image-guided kidney surgery.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1515-26. doi: 10.1007/s11548-015-1339-2. Epub 2016 Jan 13.
8
Evaluation of conoscopic holography for estimating tumor resection cavities in model-based image-guided neurosurgery.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1833-43. doi: 10.1109/TBME.2014.2308299.

本文引用的文献

2
General approach to first-order error prediction in rigid point registration.
IEEE Trans Med Imaging. 2011 Mar;30(3):679-93. doi: 10.1109/TMI.2010.2091513. Epub 2010 Nov 11.
3
Model-updated image-guided liver surgery: preliminary results using surface characterization.
Prog Biophys Mol Biol. 2010 Dec;103(2-3):197-207. doi: 10.1016/j.pbiomolbio.2010.09.014. Epub 2010 Sep 30.
4
A review of medical robotics for minimally invasive soft tissue surgery.
Proc Inst Mech Eng H. 2010;224(5):653-79. doi: 10.1243/09544119JEIM591.
5
Minimally invasive holographic surface scanning for soft-tissue image registration.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1497-506. doi: 10.1109/TBME.2010.2040736.
6
Time-of-Flight 3-D endoscopy.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):467-74. doi: 10.1007/978-3-642-04268-3_58.
7
Image-guided interventions: technology review and clinical applications.
Annu Rev Biomed Eng. 2010 Aug 15;12:119-42. doi: 10.1146/annurev-bioeng-070909-105249.
8
Comparison of 3 optical navigation systems for computer-aided maxillofacial surgery.
Arch Otolaryngol Head Neck Surg. 2008 Oct;134(10):1080-4. doi: 10.1001/archotol.134.10.1080.
10
A statistical model for point-based target registration error with anisotropic fiducial localizer error.
IEEE Trans Med Imaging. 2008 Mar;27(3):378-90. doi: 10.1109/TMI.2007.908124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验