Suppr超能文献

手术导航中用于获取表面数据的不同方法的对比研究。

Comparison study of intraoperative surface acquisition methods for surgical navigation.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

IEEE Trans Biomed Eng. 2013 Apr;60(4):1090-9. doi: 10.1109/TBME.2012.2215033. Epub 2012 Aug 23.

Abstract

Soft-tissue image-guided interventions often require the digitization of organ surfaces for providing correspondence from medical images to the physical patient in the operating room. In this paper, the effect of several inexpensive surface acquisition techniques on target registration error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is provided to compare image-to-physical registrations using three different methods of organ spatial digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of phantoms and biological tissues were acquired and registered to CT image volume counterparts. A comparison among these alignments demonstrated that registration errors were statistically smaller with the conoprobe than the tracked pointer and LRS (p<0.01). In all acquisitions, the conoprobe outperformed the LRS and tracked pointer: for example, the arithmetic means of the SRE over all data acquisitions with a porcine liver were 1.73 ± 0.77 mm, 3.25 ± 0.78 mm, and 4.44 ± 1.19 mm for the conoprobe, LRS, and tracked pointer, respectively. In a cadaveric kidney specimen, the arithmetic means of the SRE over all trials of the conoprobe and tracked pointer were 1.50 ± 0.50 mm and 3.51 ± 0.82 mm, respectively. Our results suggest that tissue displacements due to contact force and attempts to maintain contact with tissue, compromise registrations that are dependent on data acquired from a tracked surgical instrument and we provide an alternative method (tracked conoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic holography device outperforms LRS acquisitions with respect to registration accuracy.

摘要

软组织影像引导介入通常需要对器官表面进行数字化,以便将医学图像与手术室中的物理患者进行对应。本文研究了几种廉价的表面采集技术对软组织的目标注册误差和表面注册误差(SRE)的影响。提供了一种系统的方法来比较使用三种不同器官空间数字化方法的图像到物理注册:1)跟踪激光测距扫描仪(LRS),2)跟踪指针,和 3)跟踪锥光全息传感器(称为锥光探头)。对于每种数字化方法,采集了幻影和生物组织的表面,并将其与 CT 图像体积对应物进行注册。这些对齐方式的比较表明,与跟踪指针和 LRS 相比,注册误差在统计上更小(p<0.01)。在所有采集过程中,锥光探头都优于 LRS 和跟踪指针:例如,在对猪肝进行的所有数据采集过程中,SRE 的算术平均值分别为 1.73 ± 0.77mm、3.25 ± 0.78mm 和 4.44 ± 1.19mm。在一个尸体肾脏标本中,锥光探头和跟踪指针的所有试验的 SRE 的算术平均值分别为 1.50 ± 0.50mm 和 3.51 ± 0.82mm。我们的结果表明,由于接触力和试图与组织保持接触而导致的组织位移,会影响依赖于从跟踪手术器械获取的数据的注册,我们提供了一种替代方法(跟踪锥光全息术)来数字化表面以供临床使用。与 LRS 采集相比,跟踪锥光全息术设备在注册精度方面表现更好。

相似文献

1
Comparison study of intraoperative surface acquisition methods for surgical navigation.
IEEE Trans Biomed Eng. 2013 Apr;60(4):1090-9. doi: 10.1109/TBME.2012.2215033. Epub 2012 Aug 23.
2
Comparison study of intraoperative surface acquisition methods on registration accuracy for soft-tissue surgical navigation.
J Med Imaging (Bellingham). 2024 Mar;11(2):025001. doi: 10.1117/1.JMI.11.2.025001. Epub 2024 Mar 4.
5
Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.
Med Image Anal. 2015 Jan;19(1):30-45. doi: 10.1016/j.media.2014.07.004. Epub 2014 Aug 7.
6
Intraoperative cortical surface characterization using laser range scanning: preliminary results.
Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS368-76; discussion ONS376-7. doi: 10.1227/01.NEU.0000222665.40301.D2.
7
Evaluation of conoscopic holography for estimating tumor resection cavities in model-based image-guided neurosurgery.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1833-43. doi: 10.1109/TBME.2014.2308299.
8
A novel method for texture-mapping conoscopic surfaces for minimally invasive image-guided kidney surgery.
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1515-26. doi: 10.1007/s11548-015-1339-2. Epub 2016 Jan 13.
9
Minimally invasive holographic surface scanning for soft-tissue image registration.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1497-506. doi: 10.1109/TBME.2010.2040736.

引用本文的文献

1
Comparison of Implant Precision with Robots, Navigation, or Static Guides.
J Dent Res. 2025 Jan;104(1):37-44. doi: 10.1177/00220345241285566. Epub 2024 Nov 25.
2
A Safe Framework for Quantitative In Vivo Human Evaluation of Image Guidance.
IEEE Open J Eng Med Biol. 2023 May 1;5:133-139. doi: 10.1109/OJEMB.2023.3271853. eCollection 2024.
3
Comparison study of intraoperative surface acquisition methods on registration accuracy for soft-tissue surgical navigation.
J Med Imaging (Bellingham). 2024 Mar;11(2):025001. doi: 10.1117/1.JMI.11.2.025001. Epub 2024 Mar 4.
4
Calibrating 3D Scanner in the Coordinate System of Optical Tracker for Image-To-Patient Registration.
Front Neurorobot. 2021 May 14;15:636772. doi: 10.3389/fnbot.2021.636772. eCollection 2021.
6
Surface scanning for 3D dose calculation in intraoperative electron radiation therapy.
Radiat Oncol. 2018 Dec 7;13(1):243. doi: 10.1186/s13014-018-1181-0.
7
Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery.
J Med Imaging (Bellingham). 2018 Apr;5(2):021203. doi: 10.1117/1.JMI.5.2.021203. Epub 2017 Dec 14.
8
Workflow and simulation of image-to-physical registration of holes inside spongy bone.
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1425-1437. doi: 10.1007/s11548-017-1594-5. Epub 2017 May 6.
9
Contact-less stylus for surgical navigation: registration without digitization.
Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1231-1241. doi: 10.1007/s11548-017-1576-7. Epub 2017 Apr 6.
10
Improving Registration Robustness for Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework.
IEEE Trans Med Imaging. 2017 Jul;36(7):1502-1510. doi: 10.1109/TMI.2017.2668842. Epub 2017 Feb 13.

本文引用的文献

1
Design and evaluation of an optically-tracked single-CCD laser range scanner.
Med Phys. 2012 Feb;39(2):636-42. doi: 10.1118/1.3675397.
2
Model-updated image-guided liver surgery: preliminary results using surface characterization.
Prog Biophys Mol Biol. 2010 Dec;103(2-3):197-207. doi: 10.1016/j.pbiomolbio.2010.09.014. Epub 2010 Sep 30.
3
Minimally invasive holographic surface scanning for soft-tissue image registration.
IEEE Trans Biomed Eng. 2010 Jun;57(6):1497-506. doi: 10.1109/TBME.2010.2040736.
5
Conoscopic holography.
Opt Lett. 1985 Jan 1;10(1):4-6. doi: 10.1364/ol.10.000004.
6
Surface-based facial scan registration in neuronavigation procedures: a clinical study.
J Neurosurg. 2009 Dec;111(6):1201-6. doi: 10.3171/2009.3.JNS081457.
9
Registration of 3-D images using weighted geometrical features.
IEEE Trans Med Imaging. 1996;15(6):836-49. doi: 10.1109/42.544501.
10
Concepts and preliminary data toward the realization of image-guided liver surgery.
J Gastrointest Surg. 2007 Jul;11(7):844-59. doi: 10.1007/s11605-007-0090-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验