Suppr超能文献

轮状病毒 VP8*:系统发育、宿主范围及与组织血型抗原的相互作用。

Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens.

机构信息

Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.

出版信息

J Virol. 2012 Sep;86(18):9899-910. doi: 10.1128/JVI.00979-12. Epub 2012 Jul 3.

Abstract

The distal portion of rotavirus (RV) VP4 spike protein (VP8*) is implicated in binding to cellular receptors, thereby facilitating viral attachment and entry. While VP8* of some animal RVs engage sialic acid, human RVs often attach to and enter cells in a sialic acid-independent manner. A recent study demonstrated that the major human RVs (P[4], P[6], and P[8]) recognize human histo-blood group antigens (HBGAs). In this study, we performed a phylogenetic analysis of RVs and showed further variations of RV interaction with HBGAs. On the basis of the VP8* sequences, RVs are grouped into five P genogroups (P[I] to P[V]), of which P[I], P[IV], and P[V] mainly infect animals, P[II] infects humans, and P[III] infects both animals and humans. The sialic acid-dependent RVs (P[1], P[2], P[3], and P[7]) form a subcluster within P[I], while all three major P genotypes of human RVs (P[4], P[6], and P[8]) are clustered in P[II]. We then characterized three human RVs (P[9], P[14], and P[25]) in P[III] and observed a new pattern of binding to the type A antigen which is distinct from that of the P[II] RVs. The binding was demonstrated by hemagglutination and saliva binding assay using recombinant VP8* and native RVs. Homology modeling and mutagenesis study showed that the locations of the carbohydrate binding interfaces are shared with the sialic acid-dependent RVs, although different amino acids are involved. The P[III] VP8* proteins also bind the A antigens of the porcine and bovine mucins, suggesting the A antigen as a possible factor for cross-species transmission of RVs. Our study suggests that HBGAs play an important role in RV infection and evolution.

摘要

轮状病毒(RV)VP4 刺突蛋白(VP8*)的远端部分与细胞受体结合,从而促进病毒附着和进入。虽然一些动物 RV 的 VP8与唾液酸结合,但人类 RV 通常以不依赖唾液酸的方式附着和进入细胞。最近的一项研究表明,主要的人类 RV(P[4]、P[6]和 P[8])识别人类组织血型抗原(HBGAs)。在这项研究中,我们对 RV 进行了系统发育分析,并进一步展示了 RV 与 HBGAs 相互作用的变化。根据 VP8序列,RV 分为五个 P 基因组群(P[I]至 P[V]),其中 P[I]、P[IV]和 P[V]主要感染动物,P[II]感染人类,P[III]感染动物和人类。依赖唾液酸的 RV(P[1]、P[2]、P[3]和 P[7])在 P[I]内形成一个亚群,而三种主要的人类 RV 基因型(P[4]、P[6]和 P[8])都聚集在 P[II]中。然后,我们对 P[III]中的三种人类 RV(P[9]、P[14]和 P[25])进行了表征,并观察到与 P[II] RV 不同的新型 A 抗原结合模式。通过使用重组 VP8和天然 RV 进行血凝和唾液结合试验证实了结合。同源建模和突变研究表明,碳水化合物结合界面的位置与依赖唾液酸的 RV 共享,尽管涉及不同的氨基酸。P[III]VP8蛋白还结合猪和牛粘蛋白的 A 抗原,表明 A 抗原可能是 RV 跨种传播的一个因素。我们的研究表明,HBGAs 在 RV 感染和进化中发挥重要作用。

相似文献

1
Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens.
J Virol. 2012 Sep;86(18):9899-910. doi: 10.1128/JVI.00979-12. Epub 2012 Jul 3.
2
Glycan Binding Specificity and Mechanism of Human and Porcine P[6]/P[19] Rotavirus VP8*s.
J Virol. 2018 Jun 29;92(14). doi: 10.1128/JVI.00538-18. Print 2018 Jul 15.
3
Functional and Structural Characterization of P[19] Rotavirus VP8* Interaction with Histo-blood Group Antigens.
J Virol. 2016 Oct 14;90(21):9758-9765. doi: 10.1128/JVI.01566-16. Print 2016 Nov 1.
4
Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands.
J Virol. 2018 May 14;92(11). doi: 10.1128/JVI.00442-18. Print 2018 Jun 1.
6
Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes.
J Virol. 2016 Oct 14;90(21):9983-9996. doi: 10.1128/JVI.01494-16. Print 2016 Nov 1.
7
Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner.
J Virol. 2012 May;86(9):4833-43. doi: 10.1128/JVI.05507-11. Epub 2012 Feb 15.
9
Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution.
PLoS Pathog. 2017 Nov 14;13(11):e1006707. doi: 10.1371/journal.ppat.1006707. eCollection 2017 Nov.

引用本文的文献

1
Specific binding of human P[28] rotavirus VP8* protein to blood group ABH antigens on type 1 chains.
PLoS Pathog. 2025 Jul 21;21(7):e1013298. doi: 10.1371/journal.ppat.1013298. eCollection 2025 Jul.
2
Loss of mucin 2 and MHC II molecules causes rare resistance to murine RV infection.
J Virol. 2025 Feb 25;99(2):e0150724. doi: 10.1128/jvi.01507-24. Epub 2024 Dec 27.
3
Mechanism and complex roles of HSC70/HSPA8 in viral entry.
Virus Res. 2024 Sep;347:199433. doi: 10.1016/j.virusres.2024.199433. Epub 2024 Jul 17.
7
Genome analyses of species A rotavirus isolated from various mammalian hosts in Northern Ireland during 2013-2016.
Virus Evol. 2023 Jul 4;9(2):vead039. doi: 10.1093/ve/vead039. eCollection 2023.
9
Intestinal mucin-type -glycans: the major players in the host-bacteria-rotavirus interactions.
Gut Microbes. 2023 Jan-Dec;15(1):2197833. doi: 10.1080/19490976.2023.2197833.
10
Isolation and Characterization of Distinct Rotavirus A in Bat and Rodent Hosts.
J Virol. 2023 Jan 31;97(1):e0145522. doi: 10.1128/jvi.01455-22. Epub 2023 Jan 12.

本文引用的文献

2
Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner.
J Virol. 2012 May;86(9):4833-43. doi: 10.1128/JVI.05507-11. Epub 2012 Feb 15.
3
Norovirus-host interaction: multi-selections by human histo-blood group antigens.
Trends Microbiol. 2011 Aug;19(8):382-8. doi: 10.1016/j.tim.2011.05.007. Epub 2011 Jun 24.
4
ModBase, a database of annotated comparative protein structure models, and associated resources.
Nucleic Acids Res. 2011 Jan;39(Database issue):D465-74. doi: 10.1093/nar/gkq1091. Epub 2010 Nov 19.
5
Norovirus gastroenteritis, carbohydrate receptors, and animal models.
PLoS Pathog. 2010 Aug 26;6(8):e1000983. doi: 10.1371/journal.ppat.1000983.
7
Expression of histo-blood group antigens in vertebrate gonads.
Acta Biol Hung. 2010 Mar;61(1):64-72. doi: 10.1556/ABiol.61.2010.1.7.
8
AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.
J Comput Chem. 2009 Dec;30(16):2785-91. doi: 10.1002/jcc.21256.
9
Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution.
PLoS One. 2009;4(4):e5058. doi: 10.1371/journal.pone.0005058. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验