Suppr超能文献

模块化通过克服肌肉骨骼几何形状中的机械偏差来加快运动学习。

Modularity speeds up motor learning by overcoming mechanical bias in musculoskeletal geometry.

机构信息

Graduate School of Education, The University of Tokyo, Tokyo, Japan

Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.

出版信息

J R Soc Interface. 2018 Oct 10;15(147):20180249. doi: 10.1098/rsif.2018.0249.

Abstract

We can easily learn and perform a variety of movements that fundamentally require complex neuromuscular control. Many empirical findings have demonstrated that a wide range of complex muscle activation patterns could be well captured by the combination of a few functional modules, the so-called muscle synergies. Modularity represented by muscle synergies would simplify the control of a redundant neuromuscular system. However, how the reduction of neuromuscular redundancy through a modular controller contributes to sensorimotor learning remains unclear. To clarify such roles, we constructed a simple neural network model of the motor control system that included three intermediate layers representing neurons in the primary motor cortex, spinal interneurons organized into modules and motoneurons controlling upper-arm muscles. After a model learning period to generate the desired shoulder and/or elbow joint torques, we compared the adaptation to a novel rotational perturbation between modular and non-modular models. A series of simulations demonstrated that the modules reduced the effect of the bias in the distribution of muscle pulling directions, as well as in the distribution of torques associated with individual cortical neurons, which led to a more rapid adaptation to multi-directional force generation. These results suggest that modularity is crucial not only for reducing musculoskeletal redundancy but also for overcoming mechanical bias due to the musculoskeletal geometry allowing for faster adaptation to certain external environments.

摘要

我们可以轻松学习和执行各种基本需要复杂神经肌肉控制的运动。许多实证研究结果表明,几种功能模块的组合,即所谓的肌肉协同作用,可以很好地捕捉到广泛的复杂肌肉激活模式。肌肉协同作用所代表的模块化将简化冗余神经肌肉系统的控制。然而,通过模块化控制器减少神经肌肉冗余如何有助于感觉运动学习仍然不清楚。为了阐明这些作用,我们构建了一个简单的运动控制系统神经网络模型,其中包括代表初级运动皮层神经元的三个中间层、组织成模块的脊髓中间神经元和控制上臂肌肉的运动神经元。在模型学习期间生成所需的肩部和/或肘部关节扭矩后,我们比较了模块化和非模块化模型对新的旋转干扰的适应能力。一系列模拟表明,模块减少了肌肉拉力方向分布的偏差以及与单个皮质神经元相关的扭矩分布的偏差的影响,从而导致更快地适应多方向力的产生。这些结果表明,模块化不仅对于减少骨骼肌肉冗余很重要,而且对于克服由于骨骼肌肉几何形状导致的机械偏差也很重要,这使得能够更快地适应某些外部环境。

相似文献

1
Modularity speeds up motor learning by overcoming mechanical bias in musculoskeletal geometry.
J R Soc Interface. 2018 Oct 10;15(147):20180249. doi: 10.1098/rsif.2018.0249.
2
Modularity for Motor Control and Motor Learning.
Adv Exp Med Biol. 2016;957:3-19. doi: 10.1007/978-3-319-47313-0_1.
3
A modular neural model of motor synergies.
Neural Netw. 2012 Aug;32:96-108. doi: 10.1016/j.neunet.2012.02.003. Epub 2012 Feb 14.
4
Differences in adaptation rates after virtual surgeries provide direct evidence for modularity.
J Neurosci. 2013 Jul 24;33(30):12384-94. doi: 10.1523/JNEUROSCI.0122-13.2013.
5
Concurrent adaptation of force and impedance in the redundant muscle system.
Biol Cybern. 2010 Jan;102(1):31-44. doi: 10.1007/s00422-009-0348-z. Epub 2009 Nov 21.
6
Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model.
Front Comput Neurosci. 2024 May 30;18:1355855. doi: 10.3389/fncom.2024.1355855. eCollection 2024.
7
Modularity for sensorimotor control: evidence and a new prediction.
J Mot Behav. 2010 Nov;42(6):361-9. doi: 10.1080/00222895.2010.526453.
8
Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.
PLoS Comput Biol. 2012;8(6):e1002590. doi: 10.1371/journal.pcbi.1002590. Epub 2012 Jun 28.
9
Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.
Neuroscience. 2015 Dec 17;311:268-83. doi: 10.1016/j.neuroscience.2015.10.032. Epub 2015 Oct 23.

引用本文的文献

1
Investigation of adaptive muscle synergy modulated motor responses to grasping perturbations.
Sci Rep. 2024 Aug 9;14(1):18493. doi: 10.1038/s41598-024-68386-8.
2
Synergy quality assessment of muscle modules for determining learning performance using a realistic musculoskeletal model.
Front Comput Neurosci. 2024 May 30;18:1355855. doi: 10.3389/fncom.2024.1355855. eCollection 2024.
3
Spatiotemporal patterns of throwing muscle synergies in yips-affected baseball players.
Sci Rep. 2024 Feb 1;14(1):2649. doi: 10.1038/s41598-024-52332-9.
4
Motor synergy generalization framework for new targets in multi-planar and multi-directional reaching task.
R Soc Open Sci. 2022 May 18;9(5):211721. doi: 10.1098/rsos.211721. eCollection 2022 May.
5
Neural Network Models for Spinal Implementation of Muscle Synergies.
Front Syst Neurosci. 2022 Mar 16;16:800628. doi: 10.3389/fnsys.2022.800628. eCollection 2022.
7
The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis.
J R Soc Interface. 2020 Jun;17(167):20200011. doi: 10.1098/rsif.2020.0011. Epub 2020 Jun 3.

本文引用的文献

1
Neural basis for hand muscle synergies in the primate spinal cord.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8643-8648. doi: 10.1073/pnas.1704328114. Epub 2017 Jul 24.
2
Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.
Front Comput Neurosci. 2016 Feb 4;10:7. doi: 10.3389/fncom.2016.00007. eCollection 2016.
3
Action Direction of Muscle Synergies in Three-Dimensional Force Space.
Front Bioeng Biotechnol. 2015 Nov 13;3:187. doi: 10.3389/fbioe.2015.00187. eCollection 2015.
4
Representation of Muscle Synergies in the Primate Brain.
J Neurosci. 2015 Sep 16;35(37):12615-24. doi: 10.1523/JNEUROSCI.4302-14.2015.
5
Motor primitives--new data and future questions.
Curr Opin Neurobiol. 2015 Aug;33:156-65. doi: 10.1016/j.conb.2015.04.004. Epub 2015 Apr 22.
6
7
Recruitment of muscle synergies is associated with endpoint force fluctuations during multi-directional isometric contractions.
Exp Brain Res. 2015 Jun;233(6):1811-23. doi: 10.1007/s00221-015-4253-5. Epub 2015 Mar 21.
8
A neuroanatomical framework for upper limb synergies after stroke.
Front Hum Neurosci. 2015 Feb 16;9:82. doi: 10.3389/fnhum.2015.00082. eCollection 2015.
9
Identification of muscle synergies associated with gait transition in humans.
Front Hum Neurosci. 2015 Feb 10;9:48. doi: 10.3389/fnhum.2015.00048. eCollection 2015.
10
Neural constraints on learning.
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验