Suppr超能文献

LDL 和胆固醇代谢对前列腺上皮细胞生长的重要性。

The importance of LDL and cholesterol metabolism for prostate epithelial cell growth.

机构信息

School of Medicine, University of Tampere, Tampere, Finland.

出版信息

PLoS One. 2012;7(6):e39445. doi: 10.1371/journal.pone.0039445. Epub 2012 Jun 27.

Abstract

Cholesterol-lowering treatment has been suggested to delay progression of prostate cancer by decreasing serum LDL. We studied in vitro the effect of extracellular LDL-cholesterol on the number of prostate epithelial cells and on the expression of key regulators of cholesterol metabolism. Two normal prostatic epithelial cell lines (P96E, P97E), two in vitro immortalized epithelial cell lines (PWR-1E, RWPE-1) and two cancer cell lines (LNCaP and VCaP) were grown in cholesterol-deficient conditions. Cells were treated with 1-50 µg/ml LDL-cholesterol and/or 100 nM simvastatin for seven days. Cell number relative to control was measured with crystal violet staining. Changes in mRNA and protein expression of key effectors in cholesterol metabolism (HMGCR, LDLR, SREBP2 and ABCA1) were measured with RT-PCR and immunoblotting, respectively. LDL increased the relative cell number of prostate cancer cell lines, but reduced the number of normal epithelial cells at high concentrations. Treatment with cholesterol-lowering simvastatin induced up to 90% reduction in relative cell number of normal cell lines but a 15-20% reduction in relative number of cancer cells, an effect accompanied by sharp upregulation of HMGCR and LDLR. These effects were prevented by LDL. Compared to the normal cells, prostate cancer cells showed high expression of cholesterol-producing HMGCR but failed to express the major cholesterol exporter ABCA1. LDL increased relative cell number of cancer cell lines, and these cells were less vulnerable than normal cells to cholesterol-lowering simvastatin treatment. Our study supports the importance of LDL for prostate cancer cells, and suggests that cholesterol metabolism in prostate cancer has been reprogrammed to increased production in order to support rapid cell growth.

摘要

降脂治疗通过降低血清 LDL 被认为可以延缓前列腺癌的进展。我们研究了细胞外 LDL 胆固醇对前列腺上皮细胞数量和胆固醇代谢关键调节因子表达的体外影响。两种正常前列腺上皮细胞系(P96E、P97E)、两种体外永生化上皮细胞系(PWR-1E、RWPE-1)和两种癌细胞系(LNCaP 和 VCaP)在缺乏胆固醇的条件下生长。用 1-50µg/ml LDL-胆固醇和/或 100nM 辛伐他汀处理细胞 7 天。用结晶紫染色法测量相对于对照的细胞数。用 RT-PCR 和免疫印迹法分别测量胆固醇代谢关键效应物(HMGCR、LDLR、SREBP2 和 ABCA1)的 mRNA 和蛋白表达变化。LDL 增加了前列腺癌细胞系的相对细胞数,但在高浓度下减少了正常上皮细胞的数量。用降脂辛伐他汀处理诱导正常细胞系的相对细胞数减少高达 90%,但癌细胞的相对数量减少 15-20%,这一效应伴随着 HMGCR 和 LDLR 的急剧上调。LDL 阻止了这种作用。与正常细胞相比,前列腺癌细胞表现出高胆固醇产生 HMGCR 的表达,但未能表达主要的胆固醇外排 ABCA1。LDL 增加了癌细胞系的相对细胞数,这些细胞比正常细胞对降脂辛伐他汀治疗的敏感性更低。我们的研究支持 LDL 对前列腺癌细胞的重要性,并表明前列腺癌细胞中的胆固醇代谢已被重新编程以增加产量,以支持快速细胞生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ec/3384647/fa3be9f2b4b0/pone.0039445.g001.jpg

相似文献

1
The importance of LDL and cholesterol metabolism for prostate epithelial cell growth.
PLoS One. 2012;7(6):e39445. doi: 10.1371/journal.pone.0039445. Epub 2012 Jun 27.
3
Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2.
Int J Cancer. 2001 Jan 1;91(1):41-5. doi: 10.1002/1097-0215(20010101)91:1<41::aid-ijc1009>3.0.co;2-2.
4
Comparative effects of high and low-dose simvastatin on prostate epithelial cells: the role of LDL.
Eur J Pharmacol. 2011 Dec 30;673(1-3):96-100. doi: 10.1016/j.ejphar.2011.10.022. Epub 2011 Oct 25.
5
The effects of metformin and simvastatin on the growth of LNCaP and RWPE-1 prostate epithelial cell lines.
Eur J Pharmacol. 2016 Oct 5;788:160-167. doi: 10.1016/j.ejphar.2016.06.036. Epub 2016 Jun 21.
6
Deferoxamine stimulates LDLR expression and LDL uptake in HepG2 cells.
Mol Nutr Food Res. 2016 Mar;60(3):600-8. doi: 10.1002/mnfr.201500467. Epub 2015 Dec 9.

引用本文的文献

1
Tumor Cholesterol Synthesis, Statin Use, and Lethal Prostate Cancer.
Mol Cancer Res. 2025 Aug 5. doi: 10.1158/1541-7786.MCR-24-0864.
2
Review of Mendelian randomization studies on common male-specific diseases.
Front Endocrinol (Lausanne). 2025 May 16;16:1541744. doi: 10.3389/fendo.2025.1541744. eCollection 2025.
3
Research progress on cholesterol metabolism and tumor therapy.
Discov Oncol. 2025 Apr 30;16(1):647. doi: 10.1007/s12672-025-02430-5.
4
Association between high‑density lipoproteins and prostate specific antigen: A cross‑sectional study from NHANES database.
Mol Clin Oncol. 2025 Feb 18;22(4):34. doi: 10.3892/mco.2025.2829. eCollection 2025 Apr.
5
The Impact of Atorvastatin on Intraprostatic Biomarkers - Prognostic Value of 3LS-score - Follow-up of ESTO1-Trial.
Neoplasia. 2025 Mar;61:101132. doi: 10.1016/j.neo.2025.101132. Epub 2025 Feb 6.
8
Relative Uptake of Tomato Carotenoids by In Vitro Intestinal and Prostate Cancer Cells.
J Nutr. 2024 Dec;154(12):3639-3651. doi: 10.1016/j.tjnut.2024.10.012. Epub 2024 Oct 10.
10
2-Hydroxypropyl-β-cyclodextrin (HPβCD) as a Potential Therapeutic Agent for Breast Cancer.
Cancers (Basel). 2023 May 18;15(10):2828. doi: 10.3390/cancers15102828.

本文引用的文献

1
Comparative effects of high and low-dose simvastatin on prostate epithelial cells: the role of LDL.
Eur J Pharmacol. 2011 Dec 30;673(1-3):96-100. doi: 10.1016/j.ejphar.2011.10.022. Epub 2011 Oct 25.
3
The impact of hypertriglyceridemia on prostate cancer development in patients aged ≥60 years.
BJU Int. 2012 Feb;109(4):515-9. doi: 10.1111/j.1464-410X.2011.10358.x. Epub 2011 Aug 4.
4
Prostate cancer risk in the Swedish AMORIS study: the interplay among triglycerides, total cholesterol, and glucose.
Cancer. 2011 May 15;117(10):2086-95. doi: 10.1002/cncr.25758. Epub 2010 Nov 29.
5
Total cholesterol and cancer risk in a large prospective study in Korea.
J Clin Oncol. 2011 Apr 20;29(12):1592-8. doi: 10.1200/JCO.2010.31.5200. Epub 2011 Mar 21.
6
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
7
Effect of a hypercholesterolemic diet on serum lipid profile, plasma sex steroid levels, and prostate structure in rats.
Urology. 2010 Dec;76(6):1517.e1-5. doi: 10.1016/j.urology.2010.07.515. Epub 2010 Oct 25.
8
Statin use is associated with improved prostate cancer survival: is it time for a clinical trial?
Expert Rev Anticancer Ther. 2010 Oct;10(10):1563-7. doi: 10.1586/era.10.137.
10
Metabolism and proliferation share common regulatory pathways in cancer cells.
Oncogene. 2010 Aug 5;29(31):4369-77. doi: 10.1038/onc.2010.182. Epub 2010 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验