Department of Physics, University of Osnabrück, Osnabrück, Germany.
PLoS One. 2012;7(6):e39492. doi: 10.1371/journal.pone.0039492. Epub 2012 Jun 25.
Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions.
将分子探针(如荧光和氮氧自由基自旋标记物)特异性地掺入生物分子中,并通过Förster 共振能量转移(FRET)和双电子电子共振(DEER)进行后续分析,可以阐明探针之间的距离和距离变化。然而,由于探针与生物分子连接的连接子,探针具有固有构象灵活性。该特性最小化了标记侧链对靶分子结构的影响,但使实验标记间距离与大分子结构或其变化的直接相关性复杂化。考虑到探针的构象灵活性和取向的模拟方法可以帮助克服此问题。我们使用 FRET 和 DEER 进行了距离测量,并探索了不同的模拟技术,以使用 M. jannaschii RNA 聚合酶的 Rpo4/7 茎模块预测标记间距离。这是一个合适的模型系统,因为它是刚性的,并且具有高分辨率的 X 射线结构。使用真空分子动力学模拟(MD)和随机蒙特卡罗采样方法对 Rpo4/7 上的荧光标记和氮氧自由基自旋标记的构象进行了建模。对于氮氧自由基探针,我们还进行了带有显式水的 MD 模拟,并进行了旋转体文库分析。我们的结果表明,与 MD 模拟和旋转体文库方法相比,蒙特卡罗模拟与实验更吻合,并且旋转体文库方法可合理地预测距离。由于后者是我们探索的方法中计算要求最低的方法,并且许多研究人员都可以使用,因此它成为解释 DEER 距离分布的首选方法。