Suppr超能文献

基于网络拓扑特征组合预测候选基因:冠心病的案例研究。

Predicting candidate genes based on combined network topological features: a case study in coronary artery disease.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.

出版信息

PLoS One. 2012;7(6):e39542. doi: 10.1371/journal.pone.0039542. Epub 2012 Jun 22.

Abstract

Predicting candidate genes using gene expression profiles and unbiased protein-protein interactions (PPI) contributes a lot in deciphering the pathogenesis of complex diseases. Recent studies showed that there are significant disparities in network topological features between non-disease and disease genes in protein-protein interaction settings. Integrated methods could consider their characteristics comprehensively in a biological network. In this study, we introduce a novel computational method, based on combined network topological features, to construct a combined classifier and then use it to predict candidate genes for coronary artery diseases (CAD). As a result, 276 novel candidate genes were predicted and were found to share similar functions to known disease genes. The majority of the candidate genes were cross-validated by other three methods. Our method will be useful in the search for candidate genes of other diseases.

摘要

利用基因表达谱和无偏的蛋白质-蛋白质相互作用(PPI)预测候选基因,对解析复杂疾病的发病机制有很大帮助。最近的研究表明,在蛋白质-蛋白质相互作用环境中,非疾病基因和疾病基因之间的网络拓扑特征存在显著差异。集成方法可以在生物网络中全面考虑它们的特征。在这项研究中,我们介绍了一种新的计算方法,基于组合网络拓扑特征,构建组合分类器,然后用于预测冠状动脉疾病(CAD)的候选基因。结果,预测出了 276 个新的候选基因,这些基因与已知疾病基因具有相似的功能。大多数候选基因通过另外三种方法进行了交叉验证。我们的方法将有助于寻找其他疾病的候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9559/3382204/78c6cc72acd0/pone.0039542.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验