Tata Proteomics and Coagulation Unit, Thrombosis Research Institute, Narayana Hrudayalaya Hospital, Bengaluru, Karnataka 560099, India.
Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka 560099, India.
Mol Med Rep. 2018 Mar;17(3):4253-4264. doi: 10.3892/mmr.2018.8393. Epub 2018 Jan 8.
Coronary artery disease (CAD) is a major cause of mortality in India, more importantly the young Indians. Combinatorial and integrative approaches to evaluate pathways and genes to gain an improved understanding and potential biomarkers for risk assessment are required. Therefore, 608 genes from the CADgene database version 2.0, classified into 12 functional classes representing the atherosclerotic disease process, were analyzed. Homology analysis of the unique list of gene ontologies (GO) from each functional class gave 8 GO terms represented in 11 and 10 functional classes. Using disease ontology analysis 80 genes belonging to 8 GO terms, using FunDO suggested that 29 of them were identified to be associated with CAD. Extended network analysis of these genes using STRING version 9.1 gave 328 nodes and 4,525 interactions of which the top 5% had a node degree of ≥75 associated with pathways including the ErbB signaling pathway with epidermal growth factor receptor (EGFR) gene as the central hub. Evaluation of EFGR protein levels in age and gender‑matched 342 CAD patients vs. 342 control subjects demonstrated significant differences [controls=149.76±2.47 pg/ml and CAD patients stratified into stable angina (SA)=161.65±3.40 pg/ml and myocardial infarction (MI)=171.51±4.26 pg/ml]. Logistic regression analysis suggested that increased EGFR levels exhibit 3‑fold higher risk of CAD [odds ratio (OR) 3.51, 95% confidence interval [CI] 1.96‑6.28, P≤0.001], upon adjustment for hypertension, diabetes and smoking. A unit increase in EGFR levels increased the risk by 2‑fold for SA (OR 2.58, 95% CI 1.25‑5.33, P=0.01) and 3.8‑fold for MI (OR 3.82, 95% CI 1.94‑7.52, P≤0.001) following adjustment. Thus, the use of ontology mapping and network analysis in an integrative manner aids in the prioritization of biomarkers of complex disease.
冠心病(CAD)是印度死亡的主要原因,尤其是印度年轻人。需要采用组合和综合方法来评估途径和基因,以更好地了解和潜在的风险评估生物标志物。因此,分析了 CADgene 数据库版本 2.0 中的 608 个基因,这些基因分为 12 个功能类别,代表动脉粥样硬化疾病过程。对每个功能类别中独特基因本体 (GO) 列表的同源分析给出了 11 个和 10 个功能类别中代表的 8 个 GO 术语。使用疾病本体分析,属于 8 个 GO 术语的 80 个基因,使用 FunDO 分析,其中 29 个基因被认为与 CAD 相关。使用 STRING 版本 9.1 对这些基因进行扩展网络分析,得到 328 个节点和 4525 个相互作用,其中前 5%的节点度≥75,与包括表皮生长因子受体 (EGFR) 基因作为中心枢纽的 ErbB 信号通路在内的途径相关。在年龄和性别匹配的 342 名 CAD 患者与 342 名对照受试者中评估 EGFR 蛋白水平,结果显示差异显著[对照组=149.76±2.47pg/ml,CAD 患者分为稳定型心绞痛(SA)=161.65±3.40pg/ml 和心肌梗死(MI)=171.51±4.26pg/ml]。逻辑回归分析表明,EGFR 水平升高与 CAD 的风险增加 3 倍相关[比值比(OR)3.51,95%置信区间(CI)1.96-6.28,P≤0.001],在调整高血压、糖尿病和吸烟因素后。EGFR 水平每增加一个单位,SA 的风险增加 2 倍(OR 2.58,95%CI 1.25-5.33,P=0.01),MI 的风险增加 3.8 倍(OR 3.82,95%CI 1.94-7.52,P≤0.001)。因此,使用本体映射和网络分析的综合方法有助于优先考虑复杂疾病的生物标志物。