Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
PLoS One. 2012;7(6):e39616. doi: 10.1371/journal.pone.0039616. Epub 2012 Jun 28.
Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.
神经胶质瘤是最常见的原发性脑肿瘤,但由于其强大的侵袭能力,几乎无法治愈。这是当前临床肿瘤学面临的挑战。在这里,我们引入了一个数学模型,旨在提高肿瘤扩散能力的定义。该模型由一个时变的反应扩散方程组成,在一个三维空间域中区分不同的大脑拓扑结构。该模型使用一系列数字化的脑切片图像,覆盖整个大脑。模型中包含的 Talairach 图谱描述了不同层次的大脑结构。此外,Brodmann 区域的纳入允许预测肿瘤进化过程中受影响的脑功能,并估计相关症状。该模型使用基于患者特定参数化和有限差分的数值方法进行求解。模拟考虑了仅细胞增殖的初始状态(良性肿瘤),以及开始浸润的高级状态(恶性肿瘤)。生存时间是根据肿瘤大小和位置来估计的。该模型用于预测两个临床病例中的肿瘤演变。在第一个病例中,预测结果表明,当前的诊断成像低估了实际浸润区域。在第二个病例中,与文献中以前的模型相比,肿瘤扩散预测更为准确。我们的结果表明,在神经胶质瘤生长模型中纳入差异迁移是朝着更好地预测肿瘤浸润的方向迈出的又一步,在进行手术或放射外科治疗时定义肿瘤靶点。此外,将生理/心理考虑因素添加到经典解剖模型中,将提供对患者疾病的更好和全面的理解,在决定治疗方案时不仅考虑生存,还考虑生活质量。