Institute for Health Informatics, University of Minnesota, Twin Cities, MN, USA.
Int J Med Inform. 2013 Apr;82(4):239-47. doi: 10.1016/j.ijmedinf.2012.05.015. Epub 2012 Jul 2.
To evaluate the impact of insufficient longitudinal data on the accuracy of a high-throughput clinical phenotyping (HTCP) algorithm for identifying (1) patients with type 2 diabetes mellitus (T2DM) and (2) patients with no diabetes.
Retrospective study conducted at Mayo Clinic in Rochester, Minnesota. Eligible subjects were Olmsted County residents with ≥1 Mayo Clinic encounter in each of three time periods: (1) 2007, (2) from 1997 through 2006, and (3) before 1997 (N = 54,283). Diabetes relevant electronic medical record (EMR) data about diagnoses, laboratories, and medications were used. We employed the HTCP algorithm to categorize individuals as T2DM cases and non-diabetes controls. Considering the full 11 years (1997-2007) as the gold standard, we compared gold-standard categorizations with those using data for 10 subsequent intervals, ranging from 1998-2007 (10-year data) to 2007 (1-year data). Positive predictive values (PPVs) and false-negative rates (FNRs) were calculated. McNemar tests were used to determine whether categorizations using shorter time periods differed from the gold standard. Statistical significance was defined as P < 0.05.
We identified 2770 T2DM cases and 21,005 controls when the algorithm was applied using 11-year data. Using 2007 data alone, PPVs and FNRs, respectively, were 70% and 25% for case identification and 59% and 67% for control identification. All time frames differed significantly from the gold standard, except for the 10-year period.
The accuracy of the algorithm reduced remarkably as data were limited to shorter observation periods. This impact should be considered carefully when designing/executing HTCP algorithms.
评估纵向数据不足对高通量临床表型分析(HTCP)算法识别(1)2 型糖尿病(T2DM)患者和(2)无糖尿病患者的准确性的影响。
这是一项在明尼苏达州罗切斯特市梅奥诊所进行的回顾性研究。合格的研究对象为奥姆斯特德县居民,他们在三个时间段内至少有一次梅奥诊所就诊记录:(1)2007 年,(2)1997 年至 2006 年,以及(3)1997 年之前(N=54283)。使用与糖尿病相关的电子病历(EMR)数据,包括诊断、实验室检查和药物治疗。我们采用 HTCP 算法将个体归类为 T2DM 病例和非糖尿病对照组。考虑到完整的 11 年(1997-2007 年)作为金标准,我们将金标准分类与使用接下来 10 个时间区间的数据(1998-2007 年[10 年数据]至 2007 年[1 年数据])进行比较。计算阳性预测值(PPV)和假阴性率(FNR)。采用 McNemar 检验比较使用较短时间区间的分类与金标准是否存在差异。统计学显著性定义为 P<0.05。
当使用 11 年数据应用算法时,我们确定了 2770 例 T2DM 病例和 21005 例对照。仅使用 2007 年的数据,病例识别的 PPV 和 FNR 分别为 70%和 25%,对照组识别的 PPV 和 FNR 分别为 59%和 67%。除 10 年时间区间外,所有时间框架均与金标准有显著差异。
随着数据被限制在较短的观察期内,算法的准确性显著降低。在设计/执行 HTCP 算法时,应仔细考虑这一影响。