Suppr超能文献

缺血预处理可保持线粒体膜电位并限制活性氧的产生。

Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production.

机构信息

Division of Cardiothoracic Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA.

出版信息

J Surg Res. 2012 Nov;178(1):8-17. doi: 10.1016/j.jss.2012.05.090. Epub 2012 Jun 17.

Abstract

BACKGROUND

Mitochondrial superoxide radical (O(2)(•¯)) production increases after cardiac ischemia/reperfusion (IR). Ischemic preconditioning (IPC) preserves mitochondrial function and attenuates O(2)(•¯) production, but the mechanism is unknown. Mitochondrial membrane potential (mΔΨ) is known to affect O(2)(•¯) production; mitochondrial depolarization decreases O(2)(•¯) formation. We examined the relationship between O(2)(•¯) production and mΔΨ during IR and IPC.

MATERIALS/METHODS: Rat hearts were subjected to Control or IPC. Mitochondria were isolated at end equilibration (End EQ), end ischemia (End I), and end reperfusion (End RP). mΔΨ was measured using a tetraphenylphosphonium electrode. Mitochondrial O(2)(•¯) production was measured by electron paramagnetic resonance using DMPO spin trap. Cytochrome c levels were measured using high-pressure liquid chromatography.

RESULTS

IPC preserved mΔΨ at End I (-156 ± 5 versus -131 ± 6 mV, P < 0.001) and End RP (-168 ± 2 versus -155 ± 2 mV, P < 0.05). At End RP, IPC attenuated O(2)(•¯) production (2527 ± 221 versus 3523 ± 250 AU/mg protein, P < 0.05). IPC preserved cytochrome c levels (351 ± 14 versus 269 ± 16 picomoles/mg protein, P < 0.05) at End RP, and decreased mitochondrial cristae disruption (10% ± 4% versus 33% ± 7%, P < 0.05) and amorphous density formation (18% ± 4% versus 28% ± 1%, P < 0.05).

CONCLUSION

We conclude that IPC preserves mΔΨ, possibly by limiting disruption of mitochondrial inner membrane. IPC also decreases mitochondrial O(2)(•¯) production and preserves mitochondrial ultrastructure after IR. While it was previously held that slight decreases in mΔΨ decrease O(2)(•¯) production, our results indicate that preservation of mΔΨ is associated with decreased O(2)(•¯) and preservation of cardiac function in IPC. These findings indicate that the mechanism of IPC may not involve mΔΨ depolarization, but rather preservation of mitochondrial electrochemical potential.

摘要

背景

心脏缺血/再灌注(IR)后,线粒体超氧自由基(O(2)(•¯))的产生增加。缺血预处理(IPC)可保护线粒体功能并减轻 O(2)(•¯)的产生,但机制尚不清楚。线粒体膜电位(mΔΨ)已知会影响 O(2)(•¯)的产生;线粒体去极化会减少 O(2)(•¯)的形成。我们在 IR 和 IPC 期间研究了 O(2)(•¯)的产生与 mΔΨ 之间的关系。

材料/方法:大鼠心脏接受对照或 IPC。在终末平衡(End EQ)、终末缺血(End I)和终末再灌注(End RP)时分离线粒体。使用四苯基膦电极测量 mΔΨ。使用 DMPO 自旋捕获通过电子顺磁共振测量线粒体 O(2)(•¯)的产生。使用高压液相色谱法测量细胞色素 c 水平。

结果

IPC 在 End I(-156 ± 5 对-131 ± 6 mV,P < 0.001)和 End RP(-168 ± 2 对-155 ± 2 mV,P < 0.05)时保存 mΔΨ。在 End RP 时,IPC 减弱了 O(2)(•¯)的产生(2527 ± 221 对 3523 ± 250 AU/mg 蛋白,P < 0.05)。IPC 在 End RP 时还保存了细胞色素 c 水平(351 ± 14 对 269 ± 16 皮摩尔/mg 蛋白,P < 0.05),并减少了线粒体嵴的破坏(10% ± 4%对 33% ± 7%,P < 0.05)和无定形密度形成(18% ± 4%对 28% ± 1%,P < 0.05)。

结论

我们的结论是,IPC 通过限制线粒体内膜的破坏来保存 mΔΨ。IPC 还减少了 IR 后线粒体 O(2)(•¯)的产生并保存了线粒体超微结构。尽管先前认为 mΔΨ 的轻微降低会减少 O(2)(•¯)的产生,但我们的结果表明,mΔΨ 的保存与 O(2)(•¯)的减少和 IPC 中心功能的保存有关。这些发现表明,IPC 的机制可能不涉及 mΔΨ 的去极化,而是保存线粒体电化学势能。

相似文献

1
Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production.
J Surg Res. 2012 Nov;178(1):8-17. doi: 10.1016/j.jss.2012.05.090. Epub 2012 Jun 17.
2
3
Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion.
Am J Physiol Heart Circ Physiol. 2014 Oct 1;307(7):H996-H1004. doi: 10.1152/ajpheart.00189.2014. Epub 2014 Aug 1.
4
Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1442-50. doi: 10.1152/ajpheart.00256.2007. Epub 2007 May 18.
5
Mitochondrial function during ischemic preconditioning.
Surgery. 2002 Feb;131(2):172-8. doi: 10.1067/msy.2002.119490.
7
Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.
J Surg Res. 2002 Apr;103(2):243-51. doi: 10.1006/jsre.2001.6361.
9
Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
Autophagy. 2019 Dec;15(12):2142-2162. doi: 10.1080/15548627.2019.1615822. Epub 2019 May 22.
10
Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion.
Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2177-86. doi: 10.1152/ajpheart.01138.2010. Epub 2011 Mar 18.

引用本文的文献

3
Cardioprotection in right heart failure.
Br J Pharmacol. 2020 Dec;177(23):5413-5431. doi: 10.1111/bph.14992. Epub 2020 Mar 9.
5
Mitochondrial membrane potential and delayed graft function following kidney transplantation.
Am J Transplant. 2019 Feb;19(2):585-590. doi: 10.1111/ajt.15174. Epub 2018 Dec 4.
6
Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.
J Mol Biol. 2018 Oct 19;430(21):3873-3891. doi: 10.1016/j.jmb.2018.03.025. Epub 2018 Apr 4.
7
Effects of wortmannin on cardioprotection exerted by ischemic preconditioning in rat hearts subjected to ischemia-reperfusion.
J Physiol Biochem. 2016 Mar;72(1):83-91. doi: 10.1007/s13105-015-0460-6. Epub 2016 Jan 8.
8
Fluid Mechanical Forces and Endothelial Mitochondria: A Bioengineering Perspective.
Cell Mol Bioeng. 2014 Dec;7(4):483-496. doi: 10.1007/s12195-014-0357-4.
9
Caveolins in cardioprotection - translatability and mechanisms.
Br J Pharmacol. 2015 Apr;172(8):2114-25. doi: 10.1111/bph.13009. Epub 2015 Jan 13.
10
Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress.
PLoS One. 2014 Mar 21;9(3):e92246. doi: 10.1371/journal.pone.0092246. eCollection 2014.

本文引用的文献

1
A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection.
Biochem Soc Trans. 2010 Aug;38(4):841-60. doi: 10.1042/BST0380841.
2
Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):865-77. doi: 10.1016/j.bbabio.2010.02.016. Epub 2010 Feb 20.
3
Oxidative stress causes reversible changes in mitochondrial permeability and structure.
Exp Gerontol. 2010 Aug;45(7-8):596-602. doi: 10.1016/j.exger.2010.01.016. Epub 2010 Jan 22.
4
From mitochondrial dynamics to arrhythmias.
Int J Biochem Cell Biol. 2009 Oct;41(10):1940-8. doi: 10.1016/j.biocel.2009.02.016. Epub 2009 Mar 5.
5
Mitochondria and reactive oxygen species.
Free Radic Biol Med. 2009 Aug 15;47(4):333-43. doi: 10.1016/j.freeradbiomed.2009.05.004. Epub 2009 May 8.
6
Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury.
Am J Physiol Heart Circ Physiol. 2009 Apr;296(4):H1125-32. doi: 10.1152/ajpheart.00436.2008. Epub 2009 Feb 6.
7
How mitochondria produce reactive oxygen species.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.
8
Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity.
Aging Cell. 2008 Aug;7(4):552-60. doi: 10.1111/j.1474-9726.2008.00407.x. Epub 2008 Jul 10.
10
Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury.
Physiol Rev. 2008 Apr;88(2):581-609. doi: 10.1152/physrev.00024.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验