Center for the Study of American Politics, Institution for Social and Policy Studies, Yale University, New Haven, CT 06520-8209, U.S.A.
Stat Med. 2014 Feb 10;33(3):436-54. doi: 10.1002/sim.5945. Epub 2013 Sep 9.
The proliferation of longitudinal studies has increased the importance of statistical methods for time-to-event data that can incorporate time-dependent covariates. The Cox proportional hazards model is one such method that is widely used. As more extensions of the Cox model with time-dependent covariates are developed, simulations studies will grow in importance as well. An essential starting point for simulation studies of time-to-event models is the ability to produce simulated survival times from a known data generating process. This paper develops a method for the generation of survival times that follow a Cox proportional hazards model with time-dependent covariates. The method presented relies on a simple transformation of random variables generated according to a truncated piecewise exponential distribution and allows practitioners great flexibility and control over both the number of time-dependent covariates and the number of time periods in the duration of follow-up measurement. Within this framework, an additional argument is suggested that allows researchers to generate time-to-event data in which covariates change at integer-valued steps of the time scale. The purpose of this approach is to produce data for simulation experiments that mimic the types of data structures applied that researchers encounter when using longitudinal biomedical data. Validity is assessed in a set of simulation experiments, and results indicate that the proposed procedure performs well in producing data that conform to the assumptions of the Cox proportional hazards model.
纵向研究的增多增加了对能够包含时变协变量的生存数据的统计方法的重要性。Cox 比例风险模型就是这样一种广泛使用的方法。随着更多带有时变协变量的 Cox 模型的扩展,模拟研究也变得越来越重要。生存时间模型的模拟研究的一个基本起点是能够根据已知的数据生成过程生成模拟的生存时间。本文提出了一种生成遵循带有时变协变量的 Cox 比例风险模型的生存时间的方法。所提出的方法依赖于根据截断分段指数分布生成的随机变量的简单变换,并且允许从业者对时变协变量的数量和随访测量持续时间的时间段数量具有很大的灵活性和控制能力。在此框架内,建议了一个额外的参数,允许研究人员生成在时间尺度的整数值步骤处发生变化的协变量的生存时间数据。这种方法的目的是生成模拟实验的数据,这些数据模拟了研究人员在使用纵向生物医学数据时遇到的那种数据结构类型。在一组模拟实验中评估了有效性,结果表明,所提出的程序在生成符合 Cox 比例风险模型假设的数据方面表现良好。