Suppr超能文献

使用具有循环和分段时变协变量的Cox比例风险模型生成生存时间。

Generating Survival Times Using Cox Proportional Hazards Models with Cyclic and Piecewise Time-Varying Covariates.

作者信息

Huang Yunda, Zhang Yuanyuan, Zhang Zong, Gilbert Peter B

机构信息

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109 USA.

Department of Global Health, University of Washington, Seattle, WA 98105 USA.

出版信息

Stat Biosci. 2020;12(3):324-339. doi: 10.1007/s12561-020-09266-3. Epub 2020 Jan 25.

Abstract

Time-to-event outcomes with cyclic time-varying covariates are frequently encountered in biomedical studies that involve multiple or repeated administrations of an intervention. In this paper, we propose approaches to generating event times for Cox proportional hazards models with both time-invariant covariates and a continuous cyclic and piecewise time-varying covariate. Values of the latter covariate change over time through cycles of interventions and its relationship with hazard differs before and after a threshold within each cycle. The simulations of data are based on inverting the cumulative hazard function and a log link function for relating the hazard function to the covariates. We consider closed-form derivations with the baseline hazard following the exponential, Weibull, or Gompertz distribution. We propose two simulation approaches: one based on simulating survival data under a single-dose regimen first before data are aggregated over multiple-dosing cycles and another based on simulating survival data directly under a multiple-dose regimen. We consider both fixed intervals and varying intervals of the drug administration schedule. The method's validity is assessed in simulation experiments. The results indicate that the proposed procedures perform well in generating data that conform to their cyclic nature and assumptions of the Cox proportional hazards model.

摘要

在涉及多次或重复干预给药的生物医学研究中,经常会遇到具有周期性时变协变量的事件发生时间结局。在本文中,我们提出了一些方法,用于为具有时间不变协变量以及连续周期性和分段时变协变量的Cox比例风险模型生成事件时间。后一种协变量的值会随着干预周期随时间变化,并且在每个周期内的一个阈值前后,其与风险的关系有所不同。数据模拟基于对累积风险函数进行求逆以及使用对数链接函数将风险函数与协变量相关联。我们考虑在基线风险遵循指数分布、威布尔分布或冈珀茨分布的情况下进行闭式推导。我们提出了两种模拟方法:一种是先在单剂量方案下模拟生存数据,然后在多剂量周期内汇总数据;另一种是直接在多剂量方案下模拟生存数据。我们考虑了给药时间表的固定间隔和可变间隔。在模拟实验中评估了该方法的有效性。结果表明,所提出的程序在生成符合其周期性本质以及Cox比例风险模型假设的数据方面表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ee/7223425/c78ea51537b4/12561_2020_9266_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验