Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, USA.
J Am Chem Soc. 2012 Aug 15;134(32):13276-95. doi: 10.1021/ja301464c. Epub 2012 Aug 2.
The isomerization of olefins by complexes of the pincer-ligated iridium species ((tBu)PCP)Ir ((tBu)PCP = κ(3)-C(6)H(3)-2,6-(CH(2)P(t)Bu(2))(2)) and ((tBu)POCOP)Ir ((tBu)POCOP = κ(3)-C(6)H(3)-2,6-(OP(t)Bu(2))(2)) has been investigated by computational and experimental methods. The corresponding dihydrides, (pincer)IrH(2), are known to hydrogenate olefins via initial Ir-H addition across the double bond. Such an addition is also the initial step in the mechanism most widely proposed for olefin isomerization (the "hydride addition pathway"); however, the results of kinetics experiments and DFT calculations (using both M06 and PBE functionals) indicate that this is not the operative pathway for isomerization in this case. Instead, (pincer)Ir(η(2)-olefin) species undergo isomerization via the formation of (pincer)Ir(η(3)-allyl)(H) intermediates; one example of such a species, ((tBu)POCOP)Ir(η(3)-propenyl)(H), was independently generated, spectroscopically characterized, and observed to convert to ((tBu)POCOP)Ir(η(2)-propene). Surprisingly, the DFT calculations indicate that the conversion of the η(2)-olefin complex to the η(3)-allyl hydride takes place via initial dissociation of the Ir-olefin π-bond to give a σ-complex of the allylic C-H bond; this intermediate then undergoes C-H bond oxidative cleavage to give an iridium η(1)-allyl hydride which "closes" to give the η(3)-allyl hydride. Subsequently, the η(3)-allyl group "opens" in the opposite sense to give a new η(1)-allyl (thus completing what is formally a 1,3 shift of Ir), which undergoes C-H elimination and π-coordination to give a coordinated olefin that has undergone double-bond migration.
通过计算和实验方法研究了钳形配体铱配合物((tBu)PCP)Ir((tBu)PCP=κ(3)-C(6)H(3)-2,6-(CH(2)P(t)Bu(2))(2))和((tBu)POCOP)Ir((tBu)POCOP=κ(3)-C(6)H(3)-2,6-(OP(t)Bu(2))(2))对烯烃的异构化作用。已知相应的二氢化物(pincer)IrH2通过在双键上初始 Ir-H 添加来氢化烯烃。这种加成也是最广泛提出的烯烃异构化机制(“氢化物加成途径”)的初始步骤;然而,动力学实验和 DFT 计算(使用 M06 和 PBE 泛函)的结果表明,在这种情况下,这不是异构化的操作途径。相反,(pincer)Ir(η(2)-烯烃)物种通过形成(pincer)Ir(η(3)-烯丙基)(H)中间体进行异构化;这样的物种之一,((tBu)POCOP)Ir(η(3)-丙烯基)(H),是独立生成的,通过光谱学进行了表征,并观察到它转化为((tBu)POCOP)Ir(η(2)-丙烯)。令人惊讶的是,DFT 计算表明,η(2)-烯烃配合物转化为η(3)-烯丙基氢化物是通过初始解离 Ir-烯烃π键来进行的,得到烯丙基 C-H 键的σ-配合物;该中间体随后经历 C-H 键氧化裂解,得到铱η(1)-烯丙基氢化物,其“关闭”得到η(3)-烯丙基氢化物。随后,η(3)-烯丙基基团以相反的方向“打开”,得到新的η(1)-烯丙基(从而完成了 Ir 的形式上的 1,3 位移),其经历 C-H 消除和π配位,得到经历了双键迁移的配位烯烃。