Suppr超能文献

Experimental oral toxicity of domoic acid in cynomolgus monkeys (Macaca fascicularis) and rats. Preliminary investigations.

作者信息

Tryphonas L, Truelove J, Todd E, Nera E, Iverson F

机构信息

Toxicology Research Division, Health and Welfare Canada, Ottawa, Ontario.

出版信息

Food Chem Toxicol. 1990 Oct;28(10):707-15. doi: 10.1016/0278-6915(90)90147-f.

Abstract

A recent outbreak of marine food poisoning in humans was attributed to the consumption of blue mussels (Mytilus edulis L.) contaminated with domoic acid (DA) that was produced by the diatom Nitzschia pungens. The clinical and morphological effects of single oral doses of extracts of mussels contaminated with DA or of DA isolated from toxic mussels were investigated in small groups (one to six) of cynomolgus monkeys (Macaca fascicularis; 0.5-10 mg DA/kg body weight) and of Sprague-Dawley rats (60 to 80 mg DA/kg body weight). Control animals were either given saline or were not treated. To test whether monosodium glutamate, present in the food consumed by some affected humans, and dimethylsulphoxide, suspected of being present in the plankton, enhanced the response, monosodium glutamate (at 0.25% of mussel extract bolus) or dimethylsulphoxide (at 1 g per bolus) were co-administered to two (one each) of the DA-treated monkeys. DA-treated monkeys developed transient excitation characterized by vomiting. DA-treated rats showed withdrawal followed by hyperexcitation and death (in one case). Mild to moderate central nervous system lesions consistent with neuroexcitation were present in both monkeys and rats. The addition of monosodium glutamate and dimethylsulphoxide had no significant effect on the appearance and severity of central nervous system clinical signs and lesions. The wide variations in the response of test animals to orally administered DA were attributed to the protective effect of vomiting, and to suspected incomplete or slow gastro-intestinal absorption of the toxic agent. The results reinforce the view that DA is an emetic and that under appropriate conditions may also inflict excitotoxic central nervous system damage.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验