Suppr超能文献

种特异性定植模式与多物种口腔生物膜发育的血清调节。

Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

机构信息

Division of Periodontology, Department of Oral Health and Diagnostic Sciences, The University of Connecticut Health Center, Farmington, 06030-1710, USA.

出版信息

Anaerobe. 2012 Aug;18(4):459-70. doi: 10.1016/j.anaerobe.2012.06.003. Epub 2012 Jul 5.

Abstract

Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

摘要

牙周炎是由龈下生物膜组成的生态变化引起的。龈下群落的成熟受种间相互作用和群落与宿主关系的调节。为了更好地理解这一过程,我们评估了三种龈下普遍存在的微生物福赛斯坦纳菌和四种牙周病原菌牙龈卟啉单胞菌与口腔共生种形成生物膜的能力。我们还测试了类似于牙龈渗出液的血清对龈下生物膜的影响。生物膜在使用唾液培养基的流动细胞中形成。我们发现,尽管并非所有福赛斯坦纳菌菌株都能在单种生物膜中生长,但与健康相关的伴生菌放线菌和小韦荣球菌形成群落,促进了所有福赛斯坦纳菌菌株的生物膜生长。牙龈卟啉单胞菌菌株也表现出不同的形成单种生物膜的能力。牙龈卟啉单胞菌 W50 和 W83 不能形成生物膜,而 ATCC 33277 和 381 形成生物膜结构,但只有 ATCC 33277 菌株随着时间的推移而生长。与两种健康相关物种促进福赛斯坦纳菌生长的增强作用不同,没有一种牙龈卟啉单胞菌菌株能在与放线菌和小韦荣球菌形成的三种物种群落中生长。然而,添加福赛斯坦纳菌促进了与健康相关伙伴的牙龈卟啉单胞菌 ATCC 33277 的生长。重要的是,血清会抑制福赛斯坦纳菌的黏附,而有利于牙龈卟啉单胞菌的生物膜生长。这项工作突出了龈下生物膜形成中的菌株特异性。环境因素,如血清,改变了口腔微生物的定植模式,并可能通过选择性促进致病菌物种来影响龈下生物膜。

相似文献

1
Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.
Anaerobe. 2012 Aug;18(4):459-70. doi: 10.1016/j.anaerobe.2012.06.003. Epub 2012 Jul 5.
2
Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota.
J Periodontal Res. 2011 Apr;46(2):252-60. doi: 10.1111/j.1600-0765.2010.01341.x. Epub 2011 Jan 25.
3
Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel.
J Bacteriol. 2009 Nov;191(22):6804-11. doi: 10.1128/JB.01006-09. Epub 2009 Sep 11.
4
Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms.
mSystems. 2022 Aug 30;7(4):e0017022. doi: 10.1128/msystems.00170-22. Epub 2022 Jul 19.
5
Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
J Periodontal Res. 2014 Jun;49(3):323-32. doi: 10.1111/jre.12110. Epub 2013 Jul 1.
6
Autoinducer 2 of Fusobacterium nucleatum as a target molecule to inhibit biofilm formation of periodontopathogens.
Arch Oral Biol. 2013 Jan;58(1):17-27. doi: 10.1016/j.archoralbio.2012.04.016. Epub 2012 May 26.
7
Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis.
Oral Microbiol Immunol. 2008 Feb;23(1):1-6. doi: 10.1111/j.1399-302X.2007.00380.x.
9
Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models.
Front Microbiol. 2019 Jul 30;10:1716. doi: 10.3389/fmicb.2019.01716. eCollection 2019.

引用本文的文献

1
Shining Light on Oral Biofilm Fluorescence In Situ Hybridization (FISH): Probing the Accuracy of In Situ Biogeography Studies.
Mol Oral Microbiol. 2025 Aug;40(4):137-146. doi: 10.1111/omi.12494. Epub 2025 Apr 30.
2
Positive Role of Saliva in the Oral Microbiome.
Adv Exp Med Biol. 2025;1472:103-118. doi: 10.1007/978-3-031-79146-8_7.
3
Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration.
Microorganisms. 2023 Jul 18;11(7):1832. doi: 10.3390/microorganisms11071832.
5
Differential microbiota network in gingival tissues between periodontitis and periodontitis with diabetes.
Front Cell Infect Microbiol. 2022 Dec 2;12:1061125. doi: 10.3389/fcimb.2022.1061125. eCollection 2022.
6
Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms.
ISME J. 2022 Aug;16(8):2015-2026. doi: 10.1038/s41396-022-01248-1. Epub 2022 May 19.
7
A Novel Regulation of K-antigen Capsule Synthesis in Is Driven by the Response Regulator PG0720-Directed Antisense RNA.
Front Oral Health. 2021 Jul 1;2:701659. doi: 10.3389/froh.2021.701659. eCollection 2021.
8
The Role of Motility in Synergistic Biofilm Formation With .
Front Cell Infect Microbiol. 2019 Dec 18;9:432. doi: 10.3389/fcimb.2019.00432. eCollection 2019.
9
Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.
Nat Commun. 2019 Nov 6;10(1):5029. doi: 10.1038/s41467-019-13036-1.
10
Incorporation of in Preformed Biofilms by Isolated From Drinking Water of Swine Farms.
Front Vet Sci. 2018 Aug 14;5:184. doi: 10.3389/fvets.2018.00184. eCollection 2018.

本文引用的文献

1
Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing.
ISME J. 2012 Jun;6(6):1176-85. doi: 10.1038/ismej.2011.191. Epub 2011 Dec 15.
2
Microbial diversity and interactions in subgingival biofilm communities.
Front Oral Biol. 2012;15:17-40. doi: 10.1159/000329669. Epub 2011 Nov 11.
3
Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model.
Infect Immun. 2012 Feb;80(2):620-32. doi: 10.1128/IAI.05896-11. Epub 2011 Nov 21.
4
Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement.
Cell Host Microbe. 2011 Nov 17;10(5):497-506. doi: 10.1016/j.chom.2011.10.006. Epub 2011 Oct 27.
6
Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR.
Mol Microbiol. 2010 Dec;78(6):1510-22. doi: 10.1111/j.1365-2958.2010.07420.x. Epub 2010 Oct 26.
7
Dental plaque biofilms: communities, conflict and control.
Periodontol 2000. 2011 Feb;55(1):16-35. doi: 10.1111/j.1600-0757.2009.00339.x.
9
Oral biofilm architecture on natural teeth.
PLoS One. 2010 Feb 24;5(2):e9321. doi: 10.1371/journal.pone.0009321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验