Department of Bioengineering, University of California, Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA.
J Mater Sci Mater Med. 2012 Oct;23(10):2543-52. doi: 10.1007/s10856-012-4709-0. Epub 2012 Jul 7.
Human mesenchymal stem cells (hMSCs) typically range in size from 10 to 50 μm and proteins that mediate hMSC adhesion and differentiation usually have a size of a few nanometers. Nanomaterials with a feature size smaller than 100 nm have demonstrated the unique capability of promoting osteoblast (bone forming cell) adhesion and long-term functions, leading to more effective bone tissue regeneration. For new bone deposition, MSCs have to be recruited to the injury or disease sites and then differentiate into osteoblasts. Therefore, designing novel nanomaterials that are capable of attracting MSCs and directing their differentiation is of great interest to many clinical applications. This in vitro study investigated the effects of nanophase hydroxyapatite (nano-HA), nano-HA/poly(lactide-co-glycolide) (PLGA) composites and a bone morphogenetic protein (BMP-7) derived short peptide on osteogenic differentiation of hMSCs. The short peptide was loaded by physical adsorption to nano-HA or by dispersion in nanocomposites and in PLGA to determine their effects on hMSC adhesion and differentiation. The results showed that the nano-HA/PLGA composites promoted hMSC adhesion as compared to the PLGA controls. Moreover, nano-HA/PLGA composites promoted osteogenic differentiation of hMSCs to a similar extent with or without the presence of osteogenic factors in the media. In the MSC growth media without the osteogenic factors, the nanocomposites supported greater calcium-containing bone mineral deposition by hMSC than the BMP-derived short peptide alone. The nanocomposites provided promising alternatives in controlling the adhesion and differentiation of hMSCs without osteogenic factors from the culture media, and, thus, should be further studied for clinical translation and the development of novel nanocomposite-guided stem cell therapies.
人骨髓间充质干细胞(hMSCs)通常大小在 10 到 50 微米之间,而介导 hMSC 黏附与分化的蛋白通常只有几个纳米大小。特征尺寸小于 100nm 的纳米材料已经展现出促进成骨细胞(骨形成细胞)黏附和长期功能的独特能力,从而实现更有效的骨组织再生。为了进行新骨沉积,必须将 MSCs 募集到损伤或疾病部位,然后分化为成骨细胞。因此,设计能够吸引 MSCs 并指导其分化的新型纳米材料对于许多临床应用具有重要意义。这项体外研究调查了纳米相羟基磷灰石(nano-HA)、nano-HA/聚(乳酸-共-乙醇酸)(PLGA)复合材料和骨形态发生蛋白(BMP-7)衍生短肽对 hMSCs 成骨分化的影响。该短肽通过物理吸附加载到 nano-HA 上,或者通过分散在纳米复合材料和 PLGA 中来确定其对 hMSC 黏附和分化的影响。结果表明,与 PLGA 对照相比,nano-HA/PLGA 复合材料促进了 hMSC 的黏附。此外,即使在培养基中不存在成骨因子的情况下,nano-HA/PLGA 复合材料也能促进 hMSCs 向成骨细胞分化,其程度与成骨因子的存在相似。在没有成骨因子的 MSC 生长培养基中,纳米复合材料支持 hMSC 形成的含钙质骨矿物质沉积多于单独的 BMP 衍生短肽。纳米复合材料有望在不依赖培养基中成骨因子的情况下控制 hMSCs 的黏附和分化,因此应进一步研究其用于临床转化和新型纳米复合材料指导的干细胞治疗的发展。