Suppr超能文献

纳米颗粒表面电荷介导蛋白-纳米颗粒复合物所使用的细胞受体。

Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes.

机构信息

School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA.

出版信息

J Phys Chem B. 2012 Aug 2;116(30):8901-7. doi: 10.1021/jp304630q. Epub 2012 Jul 20.

Abstract

Nanoparticles are increasingly important for biological applications ranging from drug delivery to cellular imaging. In the course of these applications, nanoparticles are exposed to a complex environment of extracellular proteins that can be adsorbed onto the surface of the nanoparticle, altering nanoparticle-cell interactions. We have investigated how proteins found in blood serum affect the binding of nanoparticles to the surface of cells. Using fluorescence microscopy, we find that the cellular binding of cationic nanoparticles is enhanced by the presence of serum proteins, while the binding of anionic nanoparticles is inhibited. We have determined that this difference in cellular binding is due to the use of distinct cellular receptors. Competition assays, quantified with flow cytometry, show that the protein-nanoparticle complex formed from the cationic nanoparticles binds to scavenger receptors on the cell surface. Interestingly, the protein-nanoparticle complex formed from anionic nanoparticles binds to native protein receptors. As nanoparticles become increasingly important for in vivo applications, we expect these results will inform the design of nanoparticles with improved cellular binding.

摘要

纳米粒子在从药物输送到细胞成像等生物应用中变得越来越重要。在这些应用过程中,纳米粒子会暴露于细胞外蛋白质的复杂环境中,这些蛋白质可以被吸附到纳米粒子的表面,从而改变纳米粒子与细胞的相互作用。我们研究了血液中的蛋白质如何影响纳米粒子与细胞表面的结合。通过荧光显微镜,我们发现血清蛋白的存在会增强阳离子纳米粒子与细胞的结合,而阴离子纳米粒子的结合则受到抑制。我们已经确定,这种细胞结合的差异是由于使用了不同的细胞受体。通过流式细胞术进行定量的竞争实验表明,阳离子纳米粒子形成的蛋白-纳米粒子复合物与细胞表面的清道夫受体结合。有趣的是,阴离子纳米粒子形成的蛋白-纳米粒子复合物与天然蛋白受体结合。随着纳米粒子在体内应用中变得越来越重要,我们预计这些结果将为设计具有更好细胞结合能力的纳米粒子提供信息。

相似文献

1
Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes.
J Phys Chem B. 2012 Aug 2;116(30):8901-7. doi: 10.1021/jp304630q. Epub 2012 Jul 20.
2
Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
Acc Chem Res. 2014 Aug 19;47(8):2651-9. doi: 10.1021/ar500190q. Epub 2014 Jul 11.
4
Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles.
J Phys Chem B. 2014 Dec 11;118(49):14017-26. doi: 10.1021/jp502624n. Epub 2014 May 9.
5
Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
Mol Pharm. 2017 Dec 4;14(12):4618-4627. doi: 10.1021/acs.molpharmaceut.7b00726. Epub 2017 Nov 13.
6
DNA-nanoparticle interactions: Formation of a DNA corona and its effects on a protein corona.
Biointerphases. 2020 Oct 1;15(5):051006. doi: 10.1116/6.0000439.
7
Cellular binding of nanoparticles in the presence of serum proteins.
Chem Commun (Camb). 2011 Jan 7;47(1):466-8. doi: 10.1039/c0cc02618b. Epub 2010 Oct 1.
8
Protein Corona in Response to Flow: Effect on Protein Concentration and Structure.
Biophys J. 2018 Jul 17;115(2):209-216. doi: 10.1016/j.bpj.2018.02.036. Epub 2018 Apr 9.

引用本文的文献

4
Exploring Residue-Level Interactions between the Biofilm-Driving R2ab Protein and Polystyrene Nanoparticles.
Langmuir. 2024 Jan 16;40(2):1213-1222. doi: 10.1021/acs.langmuir.3c02609. Epub 2024 Jan 4.
5
Systematic Investigation of Cellular Response to Hydroxyl Group Orientation Differences on Gold Glyconanoparticles.
ACS Omega. 2023 Oct 31;8(45):42921-42935. doi: 10.1021/acsomega.3c05920. eCollection 2023 Nov 14.
6
Interaction of TiO nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response.
Environ Sci Nano. 2023 Sep 1;10(9):2427-2436. doi: 10.1039/d3en00179b. Epub 2023 Jul 27.
7
Cytotoxicity and Inflammatory Effects of Chitin Nanofibrils Isolated from Fungi.
Biomacromolecules. 2023 Dec 11;24(12):5737-5748. doi: 10.1021/acs.biomac.3c00710. Epub 2023 Nov 21.
8
Exploring the Residue-Level Interactions between the R2ab Protein and Polystyrene Nanoparticles.
bioRxiv. 2023 Sep 19:2023.08.28.554951. doi: 10.1101/2023.08.28.554951.
9
The Origin of the Intracellular Silver in Bacteria: A Comprehensive Study using Targeting Gold-Silver Alloy Nanoparticles.
Adv Healthc Mater. 2023 Dec;12(30):e2302084. doi: 10.1002/adhm.202302084. Epub 2023 Sep 17.
10
Engineered Nano-Bio Interfaces for Stem Cell Therapy.
Precis Chem. 2023 Jun 26;1(6):341-356. doi: 10.1021/prechem.3c00056. eCollection 2023 Aug 28.

本文引用的文献

1
Toward a molecular understanding of nanoparticle-protein interactions.
Biophys Rev. 2012 Jun;4(2):137-147. doi: 10.1007/s12551-012-0072-0. Epub 2012 Mar 15.
2
The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres.
Adv Drug Deliv Rev. 1995 Sep;16(2-3):215-233. doi: 10.1016/0169-409X(95)00026-4.
3
Nanoparticles act as protein carriers during cellular internalization.
Chem Commun (Camb). 2012 Mar 21;48(24):2961-3. doi: 10.1039/c2cc16937a. Epub 2012 Feb 13.
4
Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.
J Am Chem Soc. 2012 Feb 1;134(4):2139-47. doi: 10.1021/ja2084338. Epub 2012 Jan 23.
5
Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms.
ACS Nano. 2011 May 24;5(5):3456-68. doi: 10.1021/nn1021007. Epub 2011 Apr 1.
6
Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
ACS Nano. 2011 Mar 22;5(3):1657-69. doi: 10.1021/nn2000756. Epub 2011 Feb 23.
7
Nanobiotechnology: nanoparticle coronas take shape.
Nat Nanotechnol. 2011 Jan;6(1):11-2. doi: 10.1038/nnano.2011.267.
8
Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles.
Bioconjug Chem. 2010 Dec 15;21(12):2250-6. doi: 10.1021/bc1002423. Epub 2010 Nov 11.
9
Cellular binding of nanoparticles in the presence of serum proteins.
Chem Commun (Camb). 2011 Jan 7;47(1):466-8. doi: 10.1039/c0cc02618b. Epub 2010 Oct 1.
10
Time evolution of the nanoparticle protein corona.
ACS Nano. 2010 Jul 27;4(7):3623-32. doi: 10.1021/nn901372t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验