Sumida B H, Houston A I, McNamara J M, Hamilton W D
Department of Zoology, Oxford University, U.K.
J Theor Biol. 1990 Nov 7;147(1):59-84. doi: 10.1016/s0022-5193(05)80252-8.
The genetic algorithm (GA) as developed by Holland (1975, Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press) is an optimization technique based on natural selection. We use a modified version of this technique to investigate which aspects of natural selection make it an efficient search procedure. Our main modification to Holland's GA is the subdividing of the population into semi-isolated demes. We consider two examples. One is a fitness landscape with many local optima. The other is a model of singing in birds that has been previously analysed using dynamic programming. Both examples have epistatic interactions. In the first example we show that the GA can find the global optimum and that its success is improved by subdividing the population. In the second example we show that GAs can evolve to the optimal policy found by dynamic programming.
由霍兰德(1975年,《自然与人工系统中的适应性》。安阿伯:密歇根大学出版社)提出的遗传算法(GA)是一种基于自然选择的优化技术。我们使用该技术的一个修改版本来研究自然选择的哪些方面使其成为一种高效的搜索程序。我们对霍兰德遗传算法的主要修改是将种群细分为半隔离的同类群。我们考虑两个例子。一个是具有许多局部最优解的适应度景观。另一个是先前使用动态规划分析过的鸟类鸣叫模型。这两个例子都存在上位性相互作用。在第一个例子中,我们表明遗传算法能够找到全局最优解,并且通过细分种群提高了其成功的概率。在第二个例子中,我们表明遗传算法能够进化到通过动态规划找到的最优策略。