Center for Sensor Systems (ZESS), University of Siegen, Paul Bonatz-Str. 9-11, 57068 Siegen, Germany.
Sensors (Basel). 2012;12(5):5310-27. doi: 10.3390/s120505310. Epub 2012 Apr 26.
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
本文总结了在描述状态向量的时间演化时,从跟踪理论中借用动态模型的结果,以估计无陀螺惯性测量单元(GF-IMU)中的角运动。GF-IMU 是一种特殊类型的惯性测量单元(IMU),仅使用一组加速度计来推断角运动。使用分布式加速度计,我们得到一个由角加速度和二次角速度项组成的角信息向量(AIV)。由于 AIV 中没有显式表示角速度向量,因此我们使用卡尔曼滤波器方法来估计角速度向量。加速度计测量固有的偏置参数会产生有偏的 AIV,因此 AIV 偏置参数在增广状态向量中进行估计。使用动态模型,AIV 的附加偏置参数变得可观测,因此我们可以进行无偏的角运动估计。此外,需要一个良好的模型才能从观测中提取最大信息量。可观测性分析用于确定具有可观测状态空间模型的条件。对于更高等级的加速度计和相对较高的采样频率,加速度计测量的误差主要由噪声误差主导。因此,对两个模型进行了模拟,一个在状态空间模型中附加了偏置参数,另一个是没有偏置参数的简化模型。