Suppr超能文献

基于线性光机加速度计的无陀螺惯性导航系统。

Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.

机构信息

Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA.

Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA.

出版信息

Sensors (Basel). 2023 Apr 19;23(8):4093. doi: 10.3390/s23084093.

Abstract

High-sensitivity uniaxial opto-mechanical accelerometers provide very accurate linear acceleration measurements. In addition, an array of at least six accelerometers allows the estimation of linear and angular accelerations and becomes a gyro-free inertial navigation system. In this paper, we analyze the performance of such systems considering opto-mechanical accelerometers with different sensitivities and bandwidths. In the six-accelerometer configuration adopted here, the angular acceleration is estimated using a linear combination of accelerometers' read-outs. The linear acceleration is estimated similarly but requires a correcting term that includes angular velocities. Accelerometers' colored noise from experimental data is used to derive, analytically and through simulations, the performance of the inertial sensor. Results for six accelerometers, separated by 0.5 m in a cube configuration show noise levels of 10-7 m s-2 and 10-5 m s-2 (in Allan deviation) for time scales of one second for the low-frequency (Hz) and high-frequency (kHz) opto-mechanical accelerometers, respectively. The Allan deviation for the angular velocity at one second is 10-5 rad s-1 and 5×10-4 rad s-1. Compared to other technologies such as MEMS-based inertial sensors and optical gyroscopes, the high-frequency opto-mechanical accelerometer exhibits better performance than tactical-grade MEMS for time scales shorter than 10 s. For angular velocity, it is only superior for time scales less than a few seconds. The linear acceleration of the low-frequency accelerometer outperforms the MEMS for time scales up to 300 s and for angular velocity only for a few seconds. Fiber optical gyroscopes are orders of magnitude better than the high- and low-frequency accelerometers in gyro-free configurations. However, when considering the theoretical thermal noise limit of the low-frequency opto-mechanical accelerometer, 5×10-11 m s-2, linear acceleration noise is orders of magnitude lower than MEMS navigation systems. Angular velocity precision is around 10-10 rad s-1 at one second and 5×10-7 rad s-1 at one hour, which is comparable to fiber optical gyroscopes. While experimental validation is yet not available, the results shown here indicate the potential of opto-mechanical accelerometers as gyro-free inertial navigation sensors, provided the fundamental noise limit of the accelerometer is reached, and technical limitations such as misalignments and initial conditions errors are well controlled.

摘要

高灵敏度单轴光机加速度计可提供非常精确的线性加速度测量。此外,至少六个加速度计的阵列可用于估计线性和角加速度,并成为无陀螺惯性导航系统。在本文中,我们考虑了具有不同灵敏度和带宽的光机加速度计的性能。在采用的六加速度计配置中,角加速度是通过加速度计读数的线性组合来估计的。线性加速度的估计类似,但需要包括角速度的校正项。使用实验数据中的加速度计有色噪声,从理论和模拟两个方面推导了惯性传感器的性能。在一个边长为 0.5 米的立方体配置中,六个加速度计的结果显示,低频(Hz)和高频(kHz)光机加速度计的时间尺度为一秒时,噪声水平分别为 10-7 m s-2 和 10-5 m s-2(艾伦偏差)。一秒钟时的角速度的艾伦偏差为 10-5 rad s-1 和 5×10-4 rad s-1。与基于 MEMS 的惯性传感器和光学陀螺仪等其他技术相比,在时间尺度小于 10 秒的情况下,高频光机加速度计的性能优于战术级 MEMS。对于角速度,仅在时间尺度小于几秒钟时才有优势。低频加速度计的线性加速度在时间尺度高达 300 秒时优于 MEMS,而角速度仅在几秒钟内优于 MEMS。无陀螺配置中的光纤陀螺仪比高、低频加速度计好几个数量级。然而,当考虑低频光机加速度计的理论热噪声极限 5×10-11 m s-2时,线性加速度噪声的数量级要低几个数量级,远低于 MEMS 导航系统。角速度精度在一秒钟时约为 10-10 rad s-1,在一小时时约为 5×10-7 rad s-1,与光纤陀螺仪相当。虽然尚未进行实验验证,但这里显示的结果表明,光机加速度计作为无陀螺惯性导航传感器具有潜力,前提是达到加速度计的基本噪声极限,并且可以很好地控制诸如失准和初始条件误差等技术限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/310e/10145187/23e258c4274f/sensors-23-04093-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验